Örneklerle Rust
Rust güvenlik, hız ve eşzamanlılık üzerine odaklanan bir modern sistem programlama dilidir. Bu hedefleri çöp toplama(garbage collection) kullanmadan güvenli bellek ile gerçekler.
Örneklerle Rust (ÖR) (RBE) çeşitli Rust kavramlarını ve standart kütüphaneleri gösteren çalıştırılabilir örneklerden oluşan bir koleksiyondur. Bu örneklerden daha da fazlasını elde etmek için Rust'ı yerel olarak kurma 'yı ve resmi belgeler 'e göz atmayı unutmayın.
Ayrıca meraklıların incelemesi için sitenin kaynak kodu.
Şimdi, hadi başlayalım!
-
Hello World(Merhaba Dünya) - Geleneksel Hello World(Merhaba Dünya) programı ile başlayın.
-
Temeller - İşaretli, işaretsiz tamsayılar ve diğer temeller hakkında öğrenin.
-
Özel Tipler -
struct
veenum
. -
Değişken Bağlama - değişebilir bağlama, kapsam, gölgeleme.
-
Tipler - Tipleri tanımlama ve değiştirme hakkında öğrenin.
-
Kontrol Akışı -
if
/else
,for
, ve diğerleri. -
Fonksiyonlar - Metotlar, Closure'lar(Kapatıcılar) ve Üst Seviye Fonksiyonlar hakkında öğrenin.
-
Modüller - Modüller ile kodu düzenleme.
-
Crate'ler(Sandıklar) - Crate(sandık) Rust'ta bir derleme birimidir. Bir kütüphane oluşturmayı öğrenin.
-
Cargo - Resmi Rust paket yönetim aracının temel özelliklerini gözden geçirin.
-
Özellikler - Bir özellik modüle, crate(sandık)'a veya öğeye uygulanan üst(meta) verilerdir.
-
Generic'ler(Genelleyiciler) - Birden çok argüman türü için işe yarayabilecek bir fonksiyon veya veri tipi yazmayı öğrenin.
-
Kapsam Kuralları - Kapsamlar sahiplik(ownership), borrowing(borçlanma) ve lifetime(ömür) gibi özelliklerde önemli yer tutar.
-
Trait(Nitelik) - Bir trait(nitelik) bilinmeyen bir tür için tanımlanan metotlar koleksiyonudur:
Self
-
Hata Yönetimi - Rust ile hataları ele alma yöntemlerini öğrenin.
-
Std kütüphanesi tipleri - Std kütüphanesi tarafından sağlanan bazı özel tipler hakkında bilgi edinin.
-
Std diğer - Dosya işleme için daha özel tipler, thread'ler(iş parçacıkları).
-
Deneme(Test) - Rust'ın tüm testlerinin listesi.
-
Üst - Dokümantasyon, kıyaslama.
Hello World(Merhaba Dünya)
Geleneksel Hello World(Merhaba Dünya) programının kaynak kodu:
// Bu bir yorum satırı, derleyici tarafından yok sayılır // "Run" butonuna tıklayarak bu kodu test edebilirsiniz -> // ya da klavyenizi kullanmayı tercih ederseniz, "Ctrl + Enter" kısayolunu kullanabilirsiniz // Bu kod düzenlenebilir, kırmaktan çekinmeyin! // Her zaman orijinal koda "Reset" butonuna tıklayarak dönebilirsiniz -> // Bu ana fonksiyondur fn main() { // Derlenen ikili(compiled binary) çağrıldığında ifadeler çalıştırılır // Yazıyı konsola yazdır println!("Hello World!"); }
println!
yazıları konsola yazdıran bir macro 'dur.
Bir ikili(binary) rustc
Rust derleyicisi kullanarak oluşturulabilir.
$ rustc hello.rs
rustc
, çalıştırıldığında hello
ikili(binary)si oluşturacaktır.
$ ./hello
Hello World!
Aktivite
Beklenen çıktıyı görmek için 'Run' a tıklayın. Ardından, ikinci bir println!
macro'su ekleyin ve çıktı şöyle görünecektir:
Hello World!
I'm a Rustacean!
Comments
Any program requires comments, and Rust supports a few different varieties:
- Regular comments which are ignored by the compiler:
// Line comments which go to the end of the line.
/* Block comments which go to the closing delimiter. */
- Doc comments which are parsed into HTML library
documentation:
/// Generate library docs for the following item.
//! Generate library docs for the enclosing item.
fn main() { // This is an example of a line comment // There are two slashes at the beginning of the line // And nothing written inside these will be read by the compiler // println!("Hello, world!"); // Run it. See? Now try deleting the two slashes, and run it again. /* * This is another type of comment, a block comment. In general, * line comments are the recommended comment style. But * block comments are extremely useful for temporarily disabling * chunks of code. /* Block comments can be /* nested, */ */ * so it takes only a few keystrokes to comment out everything * in this main() function. /*/*/* Try it yourself! */*/*/ */ /* Note: The previous column of `*` was entirely for style. There's no actual need for it. */ // You can manipulate expressions more easily with block comments // than with line comments. Try deleting the comment delimiters // to change the result: let x = 5 + /* 90 + */ 5; println!("Is `x` 10 or 100? x = {}", x); }
See also:
Formatted print
Printing is handled by a series of macros
defined in std::fmt
some of which include:
format!
: write formatted text toString
print!
: same asformat!
but the text is printed to the console (io::stdout).println!
: same asprint!
but a newline is appended.eprint!
: same asformat!
but the text is printed to the standard error (io::stderr).eprintln!
: same aseprint!
but a newline is appended.
All parse text in the same fashion. As a plus, Rust checks formatting correctness at compile time.
fn main() { // In general, the `{}` will be automatically replaced with any // arguments. These will be stringified. println!("{} days", 31); // Without a suffix, 31 becomes an i32. You can change what type 31 is // by providing a suffix. The number 31i64 for example has the type i64. // There are various optional patterns this works with. Positional // arguments can be used. println!("{0}, this is {1}. {1}, this is {0}", "Alice", "Bob"); // As can named arguments. println!("{subject} {verb} {object}", object="the lazy dog", subject="the quick brown fox", verb="jumps over"); // Special formatting can be specified after a `:`. println!("{} of {:b} people know binary, the other half doesn't", 1, 2); // You can right-align text with a specified width. This will output // " 1". 5 white spaces and a "1". println!("{number:>width$}", number=1, width=6); // You can pad numbers with extra zeroes. This will output "000001". println!("{number:>0width$}", number=1, width=6); // Rust even checks to make sure the correct number of arguments are // used. println!("My name is {0}, {1} {0}", "Bond"); // FIXME ^ Add the missing argument: "James" // Create a structure named `Structure` which contains an `i32`. #[allow(dead_code)] struct Structure(i32); // However, custom types such as this structure require more complicated // handling. This will not work. println!("This struct `{}` won't print...", Structure(3)); // FIXME ^ Comment out this line. }
std::fmt
contains many traits
which govern the display
of text. The base form of two important ones are listed below:
fmt::Debug
: Uses the{:?}
marker. Format text for debugging purposes.fmt::Display
: Uses the{}
marker. Format text in a more elegant, user friendly fashion.
Here, we used fmt::Display
because the std library provides implementations
for these types. To print text for custom types, more steps are required.
Implementing the fmt::Display
trait automatically implements the
ToString
trait which allows us to convert the type to String
.
Activities
- Fix the two issues in the above code (see FIXME) so that it runs without error.
- Add a
println!
macro that prints:Pi is roughly 3.142
by controlling the number of decimal places shown. For the purposes of this exercise, uselet pi = 3.141592
as an estimate for pi. (Hint: you may need to check thestd::fmt
documentation for setting the number of decimals to display)
See also:
std::fmt
, macros
, struct
,
and traits
Debug
All types which want to use std::fmt
formatting traits
require an
implementation to be printable. Automatic implementations are only provided
for types such as in the std
library. All others must be manually
implemented somehow.
The fmt::Debug
trait
makes this very straightforward. All types can
derive
(automatically create) the fmt::Debug
implementation. This is
not true for fmt::Display
which must be manually implemented.
#![allow(unused)] fn main() { // This structure cannot be printed either with `fmt::Display` or // with `fmt::Debug`. struct UnPrintable(i32); // The `derive` attribute automatically creates the implementation // required to make this `struct` printable with `fmt::Debug`. #[derive(Debug)] struct DebugPrintable(i32); }
All std
library types are automatically printable with {:?}
too:
// Derive the `fmt::Debug` implementation for `Structure`. `Structure` // is a structure which contains a single `i32`. #[derive(Debug)] struct Structure(i32); // Put a `Structure` inside of the structure `Deep`. Make it printable // also. #[derive(Debug)] struct Deep(Structure); fn main() { // Printing with `{:?}` is similar to with `{}`. println!("{:?} months in a year.", 12); println!("{1:?} {0:?} is the {actor:?} name.", "Slater", "Christian", actor="actor's"); // `Structure` is printable! println!("Now {:?} will print!", Structure(3)); // The problem with `derive` is there is no control over how // the results look. What if I want this to just show a `7`? println!("Now {:?} will print!", Deep(Structure(7))); }
So fmt::Debug
definitely makes this printable but sacrifices some
elegance. Rust also provides "pretty printing" with {:#?}
.
#[derive(Debug)] struct Person<'a> { name: &'a str, age: u8 } fn main() { let name = "Peter"; let age = 27; let peter = Person { name, age }; // Pretty print println!("{:#?}", peter); }
One can manually implement fmt::Display
to control the display.
See also:
attributes
, derive
, std::fmt
,
and struct
Display
fmt::Debug
hardly looks compact and clean, so it is often advantageous to
customize the output appearance. This is done by manually implementing
fmt::Display
, which uses the {}
print marker. Implementing it
looks like this:
#![allow(unused)] fn main() { // Import (via `use`) the `fmt` module to make it available. use std::fmt; // Define a structure for which `fmt::Display` will be implemented. This is // a tuple struct named `Structure` that contains an `i32`. struct Structure(i32); // To use the `{}` marker, the trait `fmt::Display` must be implemented // manually for the type. impl fmt::Display for Structure { // This trait requires `fmt` with this exact signature. fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { // Write strictly the first element into the supplied output // stream: `f`. Returns `fmt::Result` which indicates whether the // operation succeeded or failed. Note that `write!` uses syntax which // is very similar to `println!`. write!(f, "{}", self.0) } } }
fmt::Display
may be cleaner than fmt::Debug
but this presents
a problem for the std
library. How should ambiguous types be displayed?
For example, if the std
library implemented a single style for all
Vec<T>
, what style should it be? Would it be either of these two?
Vec<path>
:/:/etc:/home/username:/bin
(split on:
)Vec<number>
:1,2,3
(split on,
)
No, because there is no ideal style for all types and the std
library
doesn't presume to dictate one. fmt::Display
is not implemented for Vec<T>
or for any other generic containers. fmt::Debug
must then be used for these
generic cases.
This is not a problem though because for any new container type which is
not generic,fmt::Display
can be implemented.
use std::fmt; // Import `fmt` // A structure holding two numbers. `Debug` will be derived so the results can // be contrasted with `Display`. #[derive(Debug)] struct MinMax(i64, i64); // Implement `Display` for `MinMax`. impl fmt::Display for MinMax { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { // Use `self.number` to refer to each positional data point. write!(f, "({}, {})", self.0, self.1) } } // Define a structure where the fields are nameable for comparison. #[derive(Debug)] struct Point2D { x: f64, y: f64, } // Similarly, implement `Display` for `Point2D` impl fmt::Display for Point2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { // Customize so only `x` and `y` are denoted. write!(f, "x: {}, y: {}", self.x, self.y) } } fn main() { let minmax = MinMax(0, 14); println!("Compare structures:"); println!("Display: {}", minmax); println!("Debug: {:?}", minmax); let big_range = MinMax(-300, 300); let small_range = MinMax(-3, 3); println!("The big range is {big} and the small is {small}", small = small_range, big = big_range); let point = Point2D { x: 3.3, y: 7.2 }; println!("Compare points:"); println!("Display: {}", point); println!("Debug: {:?}", point); // Error. Both `Debug` and `Display` were implemented, but `{:b}` // requires `fmt::Binary` to be implemented. This will not work. // println!("What does Point2D look like in binary: {:b}?", point); }
So, fmt::Display
has been implemented but fmt::Binary
has not, and
therefore cannot be used. std::fmt
has many such traits
and
each requires its own implementation. This is detailed further in
std::fmt
.
Activity
After checking the output of the above example, use the Point2D
struct as a
guide to add a Complex struct to the example. When printed in the same
way, the output should be:
Display: 3.3 + 7.2i
Debug: Complex { real: 3.3, imag: 7.2 }
See also:
derive
, std::fmt
, macros
, struct
,
trait
, and use
Testcase: List
Implementing fmt::Display
for a structure where the elements must each be
handled sequentially is tricky. The problem is that each write!
generates a
fmt::Result
. Proper handling of this requires dealing with all the
results. Rust provides the ?
operator for exactly this purpose.
Using ?
on write!
looks like this:
// Try `write!` to see if it errors. If it errors, return
// the error. Otherwise continue.
write!(f, "{}", value)?;
With ?
available, implementing fmt::Display
for a Vec
is
straightforward:
use std::fmt; // Import the `fmt` module. // Define a structure named `List` containing a `Vec`. struct List(Vec<i32>); impl fmt::Display for List { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { // Extract the value using tuple indexing, // and create a reference to `vec`. let vec = &self.0; write!(f, "[")?; // Iterate over `v` in `vec` while enumerating the iteration // count in `count`. for (count, v) in vec.iter().enumerate() { // For every element except the first, add a comma. // Use the ? operator to return on errors. if count != 0 { write!(f, ", ")?; } write!(f, "{}", v)?; } // Close the opened bracket and return a fmt::Result value. write!(f, "]") } } fn main() { let v = List(vec![1, 2, 3]); println!("{}", v); }
Activity
Try changing the program so that the index of each element in the vector is also printed. The new output should look like this:
[0: 1, 1: 2, 2: 3]
See also:
for
, ref
, Result
, struct
,
?
, and vec!
Formatting
We've seen that formatting is specified via a format string:
format!("{}", foo)
->"3735928559"
format!("0x{:X}", foo)
->"0xDEADBEEF"
format!("0o{:o}", foo)
->"0o33653337357"
The same variable (foo
) can be formatted differently depending on which
argument type is used: X
vs o
vs unspecified.
This formatting functionality is implemented via traits, and there is one trait
for each argument type. The most common formatting trait is Display
, which
handles cases where the argument type is left unspecified: {}
for instance.
use std::fmt::{self, Formatter, Display}; struct City { name: &'static str, // Latitude lat: f32, // Longitude lon: f32, } impl Display for City { // `f` is a buffer, and this method must write the formatted string into it fn fmt(&self, f: &mut Formatter) -> fmt::Result { let lat_c = if self.lat >= 0.0 { 'N' } else { 'S' }; let lon_c = if self.lon >= 0.0 { 'E' } else { 'W' }; // `write!` is like `format!`, but it will write the formatted string // into a buffer (the first argument) write!(f, "{}: {:.3}°{} {:.3}°{}", self.name, self.lat.abs(), lat_c, self.lon.abs(), lon_c) } } #[derive(Debug)] struct Color { red: u8, green: u8, blue: u8, } fn main() { for city in [ City { name: "Dublin", lat: 53.347778, lon: -6.259722 }, City { name: "Oslo", lat: 59.95, lon: 10.75 }, City { name: "Vancouver", lat: 49.25, lon: -123.1 }, ].iter() { println!("{}", *city); } for color in [ Color { red: 128, green: 255, blue: 90 }, Color { red: 0, green: 3, blue: 254 }, Color { red: 0, green: 0, blue: 0 }, ].iter() { // Switch this to use {} once you've added an implementation // for fmt::Display. println!("{:?}", *color); } }
You can view a full list of formatting traits and their argument
types in the std::fmt
documentation.
Activity
Add an implementation of the fmt::Display
trait for the Color
struct above
so that the output displays as:
RGB (128, 255, 90) 0x80FF5A
RGB (0, 3, 254) 0x0003FE
RGB (0, 0, 0) 0x000000
Two hints if you get stuck:
- You may need to list each color more than once,
- You can pad with zeros to a width of 2 with
:02
.
See also:
Temeller
Rust çok çeşitli temeller
e (primitive) erişim sağlar. İçeren bir örnek:
Skaler(Sayısal) Tipler
- işaretli tamsayılar:
i8
,i16
,i32
,i64
,i128
andisize
(pointer(işaretçi) boyutu) - işaretsiz tamsayılar:
u8
,u16
,u32
,u64
,u128
andusize
(pointer(işaretçi) boyutu) - kayar noktalı sayılar:
f32
,f64
char
Uluslararası dil desteği sayısallar'a'
,'α'
ve'∞'
(her biri 4 byte)bool
true
(doğru değeri) veyafalse
(yanlış değeri)- ve birim tipi
()
, tek olası değeri boş değişken grubu:()
Bir birim tipinin değeri bir boş değişken grubu olmasına rağmen, birden çok değer içermediği için birleşik tip olarak kabul edilemez.
Birleşik Tipler
- diziler şöyledir:
[1, 2, 3]
- değişken grupları şöyledir:
(1, true)
Değişkenler her zaman tip açıklamalı olabilirler. Numaralara ek olarak bir son ek veya varsayılan şekilde bir açıklama eklenebilir. Tamsayılar varsayılan olarak i32
'dir
ve kayar noktalı sayılar f64
. Rust'ın tipleri bağlamdan da çıkarabileceğini unutmayın.
fn main() { // Değişkenler tip açıklamalı olabilir. let logical: bool = true; let a_float: f64 = 1.0; // Sıradan açıklama let an_integer = 5i32; // Son ek ile açıklama // Ya da varsayılan kullanılabilir. let default_float = 3.0; // `f64` let default_integer = 7; // `i32` // Tip bağlamdan da çıkarılabilir. let mut inferred_type = 12; // i64 başka satırdan anlaşılmıştır inferred_type = 4294967296i64; // Mutable(değişebilir) değişkenin değeri değişebilir. let mut mutable = 12; // Değişebilir `i32` mutable = 21; // Hata! Değişkenin tipi değişemez! mutable = true; // Gölgeleme ile değişkenlerin üzerine istenen tipte yazılabilir. let mutable = true; }
Ayrıca Bakın:
std
kütüphanesi, [değişilebilirlik
][mut], [çıkarım
][inference], ve [gölgeleme
][shadowing]
Literals and operators
Integers 1
, floats 1.2
, characters 'a'
, strings "abc"
, booleans true
and the unit type ()
can be expressed using literals.
Integers can, alternatively, be expressed using hexadecimal, octal or binary
notation using these prefixes respectively: 0x
, 0o
or 0b
.
Underscores can be inserted in numeric literals to improve readability, e.g.
1_000
is the same as 1000
, and 0.000_001
is the same as 0.000001
.
We need to tell the compiler the type of the literals we use. For now,
we'll use the u32
suffix to indicate that the literal is an unsigned 32-bit
integer, and the i32
suffix to indicate that it's a signed 32-bit integer.
The operators available and their precedence in Rust are similar to other C-like languages.
fn main() { // Integer addition println!("1 + 2 = {}", 1u32 + 2); // Integer subtraction println!("1 - 2 = {}", 1i32 - 2); // TODO ^ Try changing `1i32` to `1u32` to see why the type is important // Short-circuiting boolean logic println!("true AND false is {}", true && false); println!("true OR false is {}", true || false); println!("NOT true is {}", !true); // Bitwise operations println!("0011 AND 0101 is {:04b}", 0b0011u32 & 0b0101); println!("0011 OR 0101 is {:04b}", 0b0011u32 | 0b0101); println!("0011 XOR 0101 is {:04b}", 0b0011u32 ^ 0b0101); println!("1 << 5 is {}", 1u32 << 5); println!("0x80 >> 2 is 0x{:x}", 0x80u32 >> 2); // Use underscores to improve readability! println!("One million is written as {}", 1_000_000u32); }
Tuples
A tuple is a collection of values of different types. Tuples are constructed
using parentheses ()
, and each tuple itself is a value with type signature
(T1, T2, ...)
, where T1
, T2
are the types of its members. Functions can
use tuples to return multiple values, as tuples can hold any number of values.
// Tuples can be used as function arguments and as return values fn reverse(pair: (i32, bool)) -> (bool, i32) { // `let` can be used to bind the members of a tuple to variables let (integer, boolean) = pair; (boolean, integer) } // The following struct is for the activity. #[derive(Debug)] struct Matrix(f32, f32, f32, f32); fn main() { // A tuple with a bunch of different types let long_tuple = (1u8, 2u16, 3u32, 4u64, -1i8, -2i16, -3i32, -4i64, 0.1f32, 0.2f64, 'a', true); // Values can be extracted from the tuple using tuple indexing println!("long tuple first value: {}", long_tuple.0); println!("long tuple second value: {}", long_tuple.1); // Tuples can be tuple members let tuple_of_tuples = ((1u8, 2u16, 2u32), (4u64, -1i8), -2i16); // Tuples are printable println!("tuple of tuples: {:?}", tuple_of_tuples); // But long Tuples cannot be printed // let too_long_tuple = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13); // println!("too long tuple: {:?}", too_long_tuple); // TODO ^ Uncomment the above 2 lines to see the compiler error let pair = (1, true); println!("pair is {:?}", pair); println!("the reversed pair is {:?}", reverse(pair)); // To create one element tuples, the comma is required to tell them apart // from a literal surrounded by parentheses println!("one element tuple: {:?}", (5u32,)); println!("just an integer: {:?}", (5u32)); //tuples can be destructured to create bindings let tuple = (1, "hello", 4.5, true); let (a, b, c, d) = tuple; println!("{:?}, {:?}, {:?}, {:?}", a, b, c, d); let matrix = Matrix(1.1, 1.2, 2.1, 2.2); println!("{:?}", matrix); }
Activity
-
Recap: Add the
fmt::Display
trait to the Matrixstruct
in the above example, so that if you switch from printing the debug format{:?}
to the display format{}
, you see the following output:( 1.1 1.2 ) ( 2.1 2.2 )
You may want to refer back to the example for print display.
-
Add a
transpose
function using thereverse
function as a template, which accepts a matrix as an argument, and returns a matrix in which two elements have been swapped. For example:println!("Matrix:\n{}", matrix); println!("Transpose:\n{}", transpose(matrix));
results in the output:
Matrix: ( 1.1 1.2 ) ( 2.1 2.2 ) Transpose: ( 1.1 2.1 ) ( 1.2 2.2 )
Arrays and Slices
An array is a collection of objects of the same type T
, stored in contiguous
memory. Arrays are created using brackets []
, and their length, which is known
at compile time, is part of their type signature [T; length]
.
Slices are similar to arrays, but their length is not known at compile time.
Instead, a slice is a two-word object, the first word is a pointer to the data,
and the second word is the length of the slice. The word size is the same as
usize, determined by the processor architecture eg 64 bits on an x86-64.
Slices can be used to borrow a section of an array, and have the type signature
&[T]
.
use std::mem; // This function borrows a slice fn analyze_slice(slice: &[i32]) { println!("first element of the slice: {}", slice[0]); println!("the slice has {} elements", slice.len()); } fn main() { // Fixed-size array (type signature is superfluous) let xs: [i32; 5] = [1, 2, 3, 4, 5]; // All elements can be initialized to the same value let ys: [i32; 500] = [0; 500]; // Indexing starts at 0 println!("first element of the array: {}", xs[0]); println!("second element of the array: {}", xs[1]); // `len` returns the count of elements in the array println!("number of elements in array: {}", xs.len()); // Arrays are stack allocated println!("array occupies {} bytes", mem::size_of_val(&xs)); // Arrays can be automatically borrowed as slices println!("borrow the whole array as a slice"); analyze_slice(&xs); // Slices can point to a section of an array // They are of the form [starting_index..ending_index] // starting_index is the first position in the slice // ending_index is one more than the last position in the slice println!("borrow a section of the array as a slice"); analyze_slice(&ys[1 .. 4]); // Out of bound indexing causes compile error println!("{}", xs[5]); }
Özel Tipler
Rust'ın özel veri tipleri iki anahtar kelimeden oluşur:
struct
: structure(yapı) tanımlar.enum
: enumeration(sayım listesi) tanımlar.
Sabitler(constant) const
veya static
anahtar kelimeleriyle de oluşturulabilir.
Structure'lar (Yapılar)
Structure'ların üç farklı tipi ("structs")
struct
anahtar kelimesini kullanarak oluşturulabilir:
- Tuple struct'lar, yani temelde, tuple olarak isimlendirilen yapılar.
- KlasikC struct'ları
- Unit(birim) struct'lar, yani üyesiz olanlar, genelleyiciler için kullanışlıdır.
#[derive(Debug)] struct Person { name: String, age: u8, } // Bir unit struct struct Unit; // Bir tuple struct struct Pair(i32, f32); // İki üyesi olan bir struct struct Point { x: f32, y: f32, } // Struct'lar başka bir struct'ın üyeleri olarak yeniden kullanılabilir #[allow(dead_code)] struct Rectangle { // Sol üst ve sağ alt köşelerin boşlukta olduğu yere göre // bir dikdörtgen belirtilebilir. top_left: Point, bottom_right: Point, } fn main() { // Kısa gösterimle üye içeren bir struct oluşturur let name = String::from("Peter"); let age = 27; let peter = Person { name, age }; // Hata ayıklaması struct'ını yazdırır println!("{:?}", peter); // `Point` örneklendirmesi let point: Point = Point { x: 10.3, y: 0.4 }; // point'in üyelerine erişim println!("point coordinates: ({}, {})", point.x, point.y); // Diğer struct'ın üyelerini kullanmak için struct güncelleme söz dizimini kullanarak yeni bir point yaratır let bottom_right = Point { x: 5.2, ..point }; // `bottom_right.y`, `point.y` ile aynı olacaktır çünkü // `point`ten üye kullandık println!("second point: ({}, {})", bottom_right.x, bottom_right.y); // `let` bağlamıyla point yok edildi(yıkım/destructure) let Point { x: top_edge, y: left_edge } = point; let _rectangle = Rectangle { // struct örneklendirmesi ifadesi top_left: Point { x: left_edge, y: top_edge }, bottom_right: bottom_right, }; // unit struct örneklendirmesi ifadesi let _unit = Unit; // tuple struct örneklendirmesi ifadesi let pair = Pair(1, 0.1); // tuple struct'ın üyelerine erişim println!("pair contains {:?} and {:?}", pair.0, pair.1); // tuple struct'ın yıkımı let Pair(integer, decimal) = pair; println!("pair contains {:?} and {:?}", integer, decimal); }
Faaliyet
- Bir dikdörtgenin alanını hesaplayan
rect_area
fonksiyonunu ekleyin (iç içe yıkmayı kullanmayı deneyin). Point
ve birf32
yi değişken olarak alansquare
fonksiyonunu ekleyin, sol alt köşesi noktada, genişliği ve yüksekliğif32
ye karşılık gelen birRectangle
(Dikdörtgen) döndürür.
Ayrıca bakın
özellikler
, ve yıkım
Enum'lar
enum
anahtar kelimesi birkaç farklı çeşitten biri olabilen bir tipin oluşturulmasına izin verir. struct
olarak geçerli olan herhangi bir değişken aynı zamanda enum
değeri olarak da geçerlidir.
// Bir web olayını sınıflandırmak için bir `enum` oluşturun. Her ikisinin de // adlar ve tip bilgilerini birlikte belirttiğini unutmayın: // `PageLoad != PageUnload` and `KeyPress(char) != Paste(String)`. // Her biri bağımsızdır. enum WebEvent { // Bir `enum`, `unit-like` (birim benzeri) olabilir, PageLoad, PageUnload, // tuple struct'ları(yapıları) gibi, KeyPress(char), Paste(String), // ya da c gibi yapılar. Click { x: i64, y: i64 }, } // Bağımsız değişken olarak `WebEvent` enum'unu alan // ve hiçbir şey döndürmeyen(return) fonksiyon. fn inspect(event: WebEvent) { match event { WebEvent::PageLoad => println!("page loaded"), WebEvent::PageUnload => println!("page unloaded"), // `enum` içindeki `c` yıkımı . WebEvent::KeyPress(c) => println!("pressed '{}'.", c), WebEvent::Paste(s) => println!("pasted \"{}\".", s), // `Click`in `x` ve `y`nin içinde yıkımı. WebEvent::Click { x, y } => { println!("clicked at x={}, y={}.", x, y); }, } } fn main() { let pressed = WebEvent::KeyPress('x'); // `to_owned()` bir string dilimine sahip olan bir `String` oluşturur. let pasted = WebEvent::Paste("my text".to_owned()); let click = WebEvent::Click { x: 20, y: 80 }; let load = WebEvent::PageLoad; let unload = WebEvent::PageUnload; inspect(pressed); inspect(pasted); inspect(click); inspect(load); inspect(unload); }
Tip takma adları(Type Aliases)
Bir tip takma adı kullanırsanız, her bir enum çeşidine kendisinin takmadı adı ile değinebilirsiniz. Bu, enum'un adı çok uzun veya çok genelse ve siz onu yeniden adlandırmak istiyorsanız yararlı olabilir.
enum VeryVerboseEnumOfThingsToDoWithNumbers { Add, Subtract, } // Tip takma adı oluşturulur type Operations = VeryVerboseEnumOfThingsToDoWithNumbers; fn main() { // Her çeşide uzun veya rahatsız edici şekilde değil, takma adıyla // değinebilirsiniz. let x = Operations::Add; }
Bunu göreceğiniz en yaygın yer, Self
takma adını kullanan impl
bloklarıdır.
enum VeryVerboseEnumOfThingsToDoWithNumbers { Add, Subtract, } impl VeryVerboseEnumOfThingsToDoWithNumbers { fn run(&self, x: i32, y: i32) -> i32 { match self { Self::Add => x + y, Self::Subtract => x - y, } } }
Enum'lar ve tip takma adları hakkında daha fazla bilgi edinmek için, bu özelliğin Rust'ta stabilize edildiği andan itibaren oluşturulan stabilizasyon raporunu okuyabilirsiniz.
Ayrıca bakın:
match
, fn
, ve String
, "İngilizce tip takma adı enum çeşitlilikleri" RFC'si
use
use
bildirimi kullanıldığında elle kapsam belirlemeye gerek yoktur:
// Kullanılmayan kod için verilen uyarıları gizleyen özellik. #![allow(dead_code)] enum Status { Rich, Poor, } enum Work { Civilian, Soldier, } fn main() { // Aleni `use` bildirimi elle kapsam belirleme olmadan // kullanılabilmelerini sağlar. use crate::Status::{Poor, Rich}; // Otomatik olarak `Work`ün içindeki her isim `use`lanır. use crate::Work::*; // `Status::Poor`a eş değer. let status = Poor; // `Work::Civilian`a eş değer. let work = Civilian; match status { // Yukarıdaki aleni`use` nedeniyle kapsam açığına dikkat edin. Rich => println!("The rich have lots of money!"), Poor => println!("The poor have no money..."), } match work { // Kapsam açığını yeniden not edin. Civilian => println!("Civilians work!"), Soldier => println!("Soldiers fight!"), } }
Ayrıca bakın:
C gibi
enum
'lar C gibi de kullanılabilirler.
// Kullanılmayan kod için verilen uyarıları gizleyen özellik. #![allow(dead_code)] // dahili ayırıcı ile enum (0'da başlar) enum Number { Zero, One, Two, } // aleni ayırıcı ile enum enum Color { Red = 0xff0000, Green = 0x00ff00, Blue = 0x0000ff, } fn main() { // `enums` integer(tam sayılar) gibi de dökümlenebilir, kullanılabilirler. println!("zero is {}", Number::Zero as i32); println!("one is {}", Number::One as i32); println!("roses are #{:06x}", Color::Red as i32); println!("violets are #{:06x}", Color::Blue as i32); }
Ayrıca bakın:
Deneme: linked-list(bağlı liste)
enum
ların yaygın bir kullanımı bağlı liste oluşturmaktır:
use crate::List::*; enum List { // Cons: Bir öğeyi ve bir pointer'ı sonraki düğüme saran Tuple struct'ı Cons(u32, Box<List>), // Nil: Bağlı listenin sonunu belirten düğüm Nil, } // Metotlar bir enum'a eklenebilir impl List { // Boş bir liste oluştur fn new() -> List { // `Nil`in tipi `List` Nil } // Bir listeyi yok edin, ardından aynı listeyi önünde yeni bir öğeyle döndürün fn prepend(self, elem: u32) -> List { // `Cons`ın da tipi List Cons(elem, Box::new(self)) } // Listenin uzunluğunu döndürün fn len(&self) -> u32 { // `self` eşlemelidir, çünkü bu metodun davranışı // `self` değişkenine bağlıdır // `self` `&List` tipine, ve `*self` `List` tipine sahiptir. // `&T` referansındaki eşleme yerine `T` somut tipi tercih edilir match *self { // Kuyruğun sahipliği alınamıyor, çünkü `self` ödünç alındı(borrow); // yerine kuyruğa yeni bir referans alınıyor: Cons(_, ref tail) => 1 + tail.len(), // Basit durum: Bir boş liste 0 uzunluğa sahiptir. Nil => 0 } } // Listenin gösterimini (heap allocated(yığın ile ayrılmış)) string olarak döndürür fn stringify(&self) -> String { match *self { Cons(head, ref tail) => { // `format!`, `print!`e benzer, ama konsola basmak yerine heap // allocated string döndürür format!("{}, {}", head, tail.stringify()) }, Nil => { format!("Nil") }, } } } fn main() { // Boş bir bağlı liste oluştur let mut list = List::new(); // Başa birkaç eleman ekle list = list.prepend(1); list = list.prepend(2); list = list.prepend(3); // Listenin son halini göster println!("linked list has length: {}", list.len()); println!("{}", list.stringify()); }
Ayrıca bakın:
sabitler
Rust, global dahil herhangi bir kapsamda bildirilebilen iki farklı sabit tipini içerir. Her ikisi de açık tip ek açıklaması gerektirirler:
const
: Değişmez değer. (ortak durum).static
:'static
ömre sahipmut
able(değişebilir) değişken. Statik ömür çıkarılır yani belirtilmesi gerekmez. Mutable bir statik değişkene erişmek veya üzerinde değişiklik yapmakgüvensiz işlem
dir.
// Global değişkenler tüm kapsamların dışında bildirilir. static LANGUAGE: &str = "Rust"; const THRESHOLD: i32 = 10; fn is_big(n: i32) -> bool { //Herhangi bir fonksiyondan sabit'e erişim n > THRESHOLD } fn main() { let n = 16; // Ana thread'den sabit'e erişim println!("This is {}", LANGUAGE); println!("The threshold is {}", THRESHOLD); println!("{} is {}", n, if is_big(n) { "big" } else { "small" }); // Hata! `const` yani sabit değişemez. THRESHOLD = 5; // FIXME ^ Yorum satırı }
Ayrıca bakın:
const
/static
RFC,
'static
ömür
Variable Bindings
Rust sabit(statik) yazım tekniği ile tip güvenliği sağlar. Değişken bağlamaları, tanımlandığında tip açıklaması içerebilir. Bununla birlikte, çoğu durumda, derleyici değişkenin tipini bağlamdan çıkarabilir ve bu ek açıklama yükünü büyük ölçüde azaltır.
Değerler(değiştirilemeyen değerler gibi), let
bağlama bildiricisi kullanılarak değişkenlere bağlanabilir.
fn main() { let an_integer = 1u32; let a_boolean = true; let unit = (); // `an_integer` değişkenini `copied_integer` değişkenine kopyalamak let copied_integer = an_integer; println!("Bir tamsayi(integer): {:?}", copied_integer); println!("Bir mantiksal degisken(boolean): {:?}", a_boolean); println!("Birim degerle tanisin: {:?}", unit); // Derleyici, kullanılmayan değişken bağlamları konusunda uyarır // bu uyarılar değişkenin adının önüne bir alt çizgi koyarak susturulabilir let _unused_variable = 3u32; let noisy_unused_variable = 2u32; // FIXME ^Uyarıyı bastırmak için alt çizgi içeren bir örnek }
Mutability
Variable bindings are immutable by default, but this can be overridden using
the mut
modifier.
fn main() { let _immutable_binding = 1; let mut mutable_binding = 1; println!("Before mutation: {}", mutable_binding); // Ok mutable_binding += 1; println!("After mutation: {}", mutable_binding); // Error! _immutable_binding += 1; // FIXME ^ Comment out this line }
The compiler will throw a detailed diagnostic about mutability errors.
Scope and Shadowing
Variable bindings have a scope, and are constrained to live in a block. A
block is a collection of statements enclosed by braces {}
.
fn main() { // This binding lives in the main function let long_lived_binding = 1; // This is a block, and has a smaller scope than the main function { // This binding only exists in this block let short_lived_binding = 2; println!("inner short: {}", short_lived_binding); } // End of the block // Error! `short_lived_binding` doesn't exist in this scope println!("outer short: {}", short_lived_binding); // FIXME ^ Comment out this line println!("outer long: {}", long_lived_binding); }
Also, variable shadowing is allowed.
fn main() { let shadowed_binding = 1; { println!("before being shadowed: {}", shadowed_binding); // This binding *shadows* the outer one let shadowed_binding = "abc"; println!("shadowed in inner block: {}", shadowed_binding); } println!("outside inner block: {}", shadowed_binding); // This binding *shadows* the previous binding let shadowed_binding = 2; println!("shadowed in outer block: {}", shadowed_binding); }
Declare first
It's possible to declare variable bindings first, and initialize them later. However, this form is seldom used, as it may lead to the use of uninitialized variables.
fn main() { // Declare a variable binding let a_binding; { let x = 2; // Initialize the binding a_binding = x * x; } println!("a binding: {}", a_binding); let another_binding; // Error! Use of uninitialized binding println!("another binding: {}", another_binding); // FIXME ^ Comment out this line another_binding = 1; println!("another binding: {}", another_binding); }
The compiler forbids use of uninitialized variables, as this would lead to undefined behavior.
Freezing
When data is bound by the same name immutably, it also freezes. Frozen data can't be modified until the immutable binding goes out of scope:
fn main() { let mut _mutable_integer = 7i32; { // Shadowing by immutable `_mutable_integer` let _mutable_integer = _mutable_integer; // Error! `_mutable_integer` is frozen in this scope _mutable_integer = 50; // FIXME ^ Comment out this line // `_mutable_integer` goes out of scope } // Ok! `_mutable_integer` is not frozen in this scope _mutable_integer = 3; }
Tipler
Rust, temel ve kullanıcı tanımlı tiplerin türünü değiştirmek veya tanımlamak için çeşitli mekanizmalar sağlar. Şunları kapsar:
- Temel tipler arasında döküm
- Değişmezler arasından istenilen tipe özelleştirme
- Tip çıkarımı kullanımı
- Tipleri takma adlandırmak
Casting
Rust provides no implicit type conversion (coercion) between primitive types.
But, explicit type conversion (casting) can be performed using the as
keyword.
Rules for converting between integral types follow C conventions generally, except in cases where C has undefined behavior. The behavior of all casts between integral types is well defined in Rust.
// Suppress all warnings from casts which overflow. #![allow(overflowing_literals)] fn main() { let decimal = 65.4321_f32; // Error! No implicit conversion let integer: u8 = decimal; // FIXME ^ Comment out this line // Explicit conversion let integer = decimal as u8; let character = integer as char; // Error! There are limitations in conversion rules. A float cannot be directly converted to a char. let character = decimal as char; // FIXME ^ Comment out this line println!("Casting: {} -> {} -> {}", decimal, integer, character); // when casting any value to an unsigned type, T, // T::MAX + 1 is added or subtracted until the value // fits into the new type // 1000 already fits in a u16 println!("1000 as a u16 is: {}", 1000 as u16); // 1000 - 256 - 256 - 256 = 232 // Under the hood, the first 8 least significant bits (LSB) are kept, // while the rest towards the most significant bit (MSB) get truncated. println!("1000 as a u8 is : {}", 1000 as u8); // -1 + 256 = 255 println!(" -1 as a u8 is : {}", (-1i8) as u8); // For positive numbers, this is the same as the modulus println!("1000 mod 256 is : {}", 1000 % 256); // When casting to a signed type, the (bitwise) result is the same as // first casting to the corresponding unsigned type. If the most significant // bit of that value is 1, then the value is negative. // Unless it already fits, of course. println!(" 128 as a i16 is: {}", 128 as i16); // 128 as u8 -> 128, whose two's complement in eight bits is: println!(" 128 as a i8 is : {}", 128 as i8); // repeating the example above // 1000 as u8 -> 232 println!("1000 as a u8 is : {}", 1000 as u8); // and the two's complement of 232 is -24 println!(" 232 as a i8 is : {}", 232 as i8); // Since Rust 1.45, the `as` keyword performs a *saturating cast* when casting from float to int. // If the floating point value exceeds the upper bound or is less than the lower bound, the returned value will be equal to the bound crossed. // 300.0 is 255 println!("300.0 is {}", 300.0_f32 as u8); // -100.0 as u8 is 0 println!("-100.0 as u8 is {}", -100.0_f32 as u8); // nan as u8 is 0 println!("nan as u8 is {}", f32::NAN as u8); // This behavior incures a small runtime cost and can be avoided with unsafe methods, however the results might overflow and return **unsound values**. Use these methods wisely: unsafe { // 300.0 is 44 println!("300.0 is {}", 300.0_f32.to_int_unchecked::<u8>()); // -100.0 as u8 is 156 println!("-100.0 as u8 is {}", (-100.0_f32).to_int_unchecked::<u8>()); // nan as u8 is 0 println!("nan as u8 is {}", f32::NAN.to_int_unchecked::<u8>()); } }
Literals
Numeric literals can be type annotated by adding the type as a suffix. As an example,
to specify that the literal 42
should have the type i32
, write 42i32
.
The type of unsuffixed numeric literals will depend on how they are used. If no
constraint exists, the compiler will use i32
for integers, and f64
for
floating-point numbers.
fn main() { // Suffixed literals, their types are known at initialization let x = 1u8; let y = 2u32; let z = 3f32; // Unsuffixed literals, their types depend on how they are used let i = 1; let f = 1.0; // `size_of_val` returns the size of a variable in bytes println!("size of `x` in bytes: {}", std::mem::size_of_val(&x)); println!("size of `y` in bytes: {}", std::mem::size_of_val(&y)); println!("size of `z` in bytes: {}", std::mem::size_of_val(&z)); println!("size of `i` in bytes: {}", std::mem::size_of_val(&i)); println!("size of `f` in bytes: {}", std::mem::size_of_val(&f)); }
There are some concepts used in the previous code that haven't been explained yet, here's a brief explanation for the impatient readers:
std::mem::size_of_val
is a function, but called with its full path. Code can be split in logical units called modules. In this case, thesize_of_val
function is defined in themem
module, and themem
module is defined in thestd
crate. For more details, see modules and crates.
Inference
The type inference engine is pretty smart. It does more than looking at the type of the value expression during an initialization. It also looks at how the variable is used afterwards to infer its type. Here's an advanced example of type inference:
fn main() { // Because of the annotation, the compiler knows that `elem` has type u8. let elem = 5u8; // Create an empty vector (a growable array). let mut vec = Vec::new(); // At this point the compiler doesn't know the exact type of `vec`, it // just knows that it's a vector of something (`Vec<_>`). // Insert `elem` in the vector. vec.push(elem); // Aha! Now the compiler knows that `vec` is a vector of `u8`s (`Vec<u8>`) // TODO ^ Try commenting out the `vec.push(elem)` line println!("{:?}", vec); }
No type annotation of variables was needed, the compiler is happy and so is the programmer!
Aliasing
The type
statement can be used to give a new name to an existing type. Types
must have UpperCamelCase
names, or the compiler will raise a warning. The
exception to this rule are the primitive types: usize
, f32
, etc.
// `NanoSecond` is a new name for `u64`. type NanoSecond = u64; type Inch = u64; // Use an attribute to silence warning. #[allow(non_camel_case_types)] type u64_t = u64; // TODO ^ Try removing the attribute fn main() { // `NanoSecond` = `Inch` = `u64_t` = `u64`. let nanoseconds: NanoSecond = 5 as u64_t; let inches: Inch = 2 as u64_t; // Note that type aliases *don't* provide any extra type safety, because // aliases are *not* new types println!("{} nanoseconds + {} inches = {} unit?", nanoseconds, inches, nanoseconds + inches); }
The main use of aliases is to reduce boilerplate; for example the IoResult<T>
type
is an alias for the Result<T, IoError>
type.
See also:
Dönüşüm
Temel tipler, döküm yoluyla birbirine dönüştürülebilir.
Rust nitelik'leri kullanarak özel tipler(yani struct
ve enum
) arasındaki dönüşümü ele alır. Genel dönüşümler, From
ve Into
niteliklerini kullancaktır. Bununla birlikte, daha yaygın durumlar için, özellikle String
(dizeler)(katarlar)dan veya dizelere dönüşüm yapılırken daha spesifik olanları vardır.
From(-den)
ve Into(biçimine)
From
ve Into
doğaları gereği birbirine bağlı iki niteliktir, bu da aslında implementasyonlarının bir parçasıdır. Eğer A tipinden B tipine dönüşüm yapılabiliyorsa, B tipinden A tipine de kolaylıkla dönüşüm yapılabilir.
From
From
niteliği bir tipin kendisini başka tipten nasıl oluşturacağını tanımlamasına izin verir, bu nedenle birkaç tür arasında dönüştürme yapmak için çok basit bir mekanizma sağlar. Temel ve yaygın türlerin dönüştürülmesi için standart kütüphanede bu özelliğin çok sayıda implementasyonu vardır.
Örneğin str
tipini kolayca String
tipine dönüştürebiliriz.
#![allow(unused)] fn main() { let my_str = "hello"; let my_string = String::from(my_str); }
Kendi tipimiz için bir dönüşüm tanımlamak için benzer bir şey yapabiliriz.
use std::convert::From; #[derive(Debug)] struct Number { value: i32, } impl From<i32> for Number { fn from(item: i32) -> Self { Number { value: item } } } fn main() { let num = Number::from(30); println!("My number is {:?}", num); }
Into
Into
niteliği aslında basitçe From
niteliğinin karşılığıdır.From
niteliğini tanımladığınız tipinize implemente ettiyseniz Into
gerekli olduğunda onu çağıracaktır.
Into
niteliğini kullanmak genellikle, derleyici bunu çoğu zaman belirleyemediğinden dönüştürülecek tipin belirtilmesini gerektirir.
use std::convert::From; #[derive(Debug)] struct Number { value: i32, } impl From<i32> for Number { fn from(item: i32) -> Self { Number { value: item } } } fn main() { let int = 5; // Try removing the type declaration let num: Number = int.into(); println!("My number is {:?}", num); }
TryFrom
ve TryInto
From
veInto
'ya benzer olarak, TryFrom
ve TryInto
tipler arasında dönüşüm için genel özelliklerdir. From
/Into
'dan farklı olarak, TryFrom
/TryInto
nitelikleri hatalı olabilecek dönüşümlerde kullanılır, ve bu nedenle;
Result
(sonuç) değeri döndürürler.
use std::convert::TryFrom; use std::convert::TryInto; #[derive(Debug, PartialEq)] struct EvenNumber(i32); impl TryFrom<i32> for EvenNumber { type Error = (); fn try_from(value: i32) -> Result<Self, Self::Error> { if value % 2 == 0 { Ok(EvenNumber(value)) } else { Err(()) } } } fn main() { // TryFrom assert_eq!(EvenNumber::try_from(8), Ok(EvenNumber(8))); assert_eq!(EvenNumber::try_from(5), Err(())); // TryInto let result: Result<EvenNumber, ()> = 8i32.try_into(); assert_eq!(result, Ok(EvenNumber(8))); let result: Result<EvenNumber, ()> = 5i32.try_into(); assert_eq!(result, Err(())); }
To and from Strings(Katarlara ve Katarlardan)
String(Katar)'e Dönüşüm
Herhangi bir tipi String
e dönüştürmek gayet basit bir şekilde ToString
niteliğini o tip için implemente etmektir.
Ama bunu doğrudan yapmak yerine, otomatik olarak ToString
sağlayan ve aynı zamanda print!
bölümünde de anlatıldığı gibi tipi yazdırmaya izin veren fmt::Display
niteliğini uygulamalısınız.
use std::fmt; struct Circle { radius: i32 } impl fmt::Display for Circle { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Circle of radius {}", self.radius) } } fn main() { let circle = Circle { radius: 6 }; println!("{}", circle.to_string()); }
String'leri Ayrıştırmak
Bir string'i dönüştürmek için en sık kullanılan tiplerden biri sayılardır. Bunun deyimsel yaklaşımı; parse
fonksiyonunu kullanmak, tip çıkarımını düzenlemek veya 'turbofish' söz dizimini kullanarak ayrıştırılacak tipi belirlemektir.
Her iki alternatif de aşağıdaki örnekte gösterilmektedir.
Bu, FromStr
niteliği bu tip için implemente edildiği sürece string'i belirtilen tipe dönüştürecektir.
Standart kütüphane içindeki çeşitli tipler için implemente edilir. Bu fonksiyonelliği kullanıcı tanımlı bir tip üzerinde elde etmek için, bu tip üzerinde FromStr
niteliğini implemente etmeniz yeterlidir.
fn main() { let parsed: i32 = "5".parse().unwrap(); let turbo_parsed = "10".parse::<i32>().unwrap(); let sum = parsed + turbo_parsed; println!("Sum: {:?}", sum); }
Ifadeler
Bir Rust programı (çoğunlukla) bir dizi ifadelerden oluşur:
fn main() {
// ifade
// ifade
// ifade
}
Rust'ta birkaç tür ifade vardır. En yaygın ikisi değişken bağlayıcı bildirimi, ve bir ifade ile ;
kullanımıdır:
fn main() {
// değişken bağlayıcı
let x = 5;
// ifade;
x;
x + 1;
15;
}
Bloklar da ifadelerdir, bu sebeple atamalarda değer olarak kullanılabilirler. Bloktaki son ifade, yerel bir değişken gibi yer ifadesine atanacaktır. Bununla birlikte, bloğun son ifadesi noktalı virgülle biterse, dönüş değeri ()
olacaktır.
fn main() { let x = 5u32; let y = { let x_squared = x * x; let x_cube = x_squared * x; // Bu ifade `y` ye atanacaktır x_cube + x_squared + x }; let z = { // Noktalı virgül bu ifadeyi önler(durdurur) ve `()` , `z` ye atanır 2 * x; }; println!("x is {:?}", x); println!("y is {:?}", y); println!("z is {:?}", z); }
Kontrol Akışı
Herhangi bir programlama dilinin oldukça önemli bir parçası kontrol akışını değiştirmenin yollarıdır:
if
/else
, for
, ve diğerleri. Rust'taki onlar hakkında konuşalım.
if/else
Branching with if
-else
is similar to other languages. Unlike many of them,
the boolean condition doesn't need to be surrounded by parentheses, and each
condition is followed by a block. if
-else
conditionals are expressions,
and, all branches must return the same type.
fn main() { let n = 5; if n < 0 { print!("{} is negative", n); } else if n > 0 { print!("{} is positive", n); } else { print!("{} is zero", n); } let big_n = if n < 10 && n > -10 { println!(", and is a small number, increase ten-fold"); // This expression returns an `i32`. 10 * n } else { println!(", and is a big number, halve the number"); // This expression must return an `i32` as well. n / 2 // TODO ^ Try suppressing this expression with a semicolon. }; // ^ Don't forget to put a semicolon here! All `let` bindings need it. println!("{} -> {}", n, big_n); }
loop
Rust provides a loop
keyword to indicate an infinite loop.
The break
statement can be used to exit a loop at anytime, whereas the
continue
statement can be used to skip the rest of the iteration and start a
new one.
fn main() { let mut count = 0u32; println!("Let's count until infinity!"); // Infinite loop loop { count += 1; if count == 3 { println!("three"); // Skip the rest of this iteration continue; } println!("{}", count); if count == 5 { println!("OK, that's enough"); // Exit this loop break; } } }
Nesting and labels
It's possible to break
or continue
outer loops when dealing with nested
loops. In these cases, the loops must be annotated with some 'label
, and the
label must be passed to the break
/continue
statement.
#![allow(unreachable_code)] fn main() { 'outer: loop { println!("Entered the outer loop"); 'inner: loop { println!("Entered the inner loop"); // This would break only the inner loop //break; // This breaks the outer loop break 'outer; } println!("This point will never be reached"); } println!("Exited the outer loop"); }
Returning from loops
One of the uses of a loop
is to retry an operation until it succeeds. If the
operation returns a value though, you might need to pass it to the rest of the
code: put it after the break
, and it will be returned by the loop
expression.
fn main() { let mut counter = 0; let result = loop { counter += 1; if counter == 10 { break counter * 2; } }; assert_eq!(result, 20); }
while
The while
keyword can be used to run a loop while a condition is true.
Let's write the infamous FizzBuzz using a while
loop.
fn main() { // A counter variable let mut n = 1; // Loop while `n` is less than 101 while n < 101 { if n % 15 == 0 { println!("fizzbuzz"); } else if n % 3 == 0 { println!("fizz"); } else if n % 5 == 0 { println!("buzz"); } else { println!("{}", n); } // Increment counter n += 1; } }
for loops
for and range
The for in
construct can be used to iterate through an Iterator
.
One of the easiest ways to create an iterator is to use the range
notation a..b
. This yields values from a
(inclusive) to b
(exclusive) in steps of one.
Let's write FizzBuzz using for
instead of while
.
fn main() { // `n` will take the values: 1, 2, ..., 100 in each iteration for n in 1..101 { if n % 15 == 0 { println!("fizzbuzz"); } else if n % 3 == 0 { println!("fizz"); } else if n % 5 == 0 { println!("buzz"); } else { println!("{}", n); } } }
Alternatively, a..=b
can be used for a range that is inclusive on both ends.
The above can be written as:
fn main() { // `n` will take the values: 1, 2, ..., 100 in each iteration for n in 1..=100 { if n % 15 == 0 { println!("fizzbuzz"); } else if n % 3 == 0 { println!("fizz"); } else if n % 5 == 0 { println!("buzz"); } else { println!("{}", n); } } }
for and iterators
The for in
construct is able to interact with an Iterator
in several ways.
As discussed in the section on the Iterator trait, by default the for
loop will apply the into_iter
function to the collection. However, this is
not the only means of converting collections into iterators.
into_iter
, iter
and iter_mut
all handle the conversion of a collection
into an iterator in different ways, by providing different views on the data
within.
iter
- This borrows each element of the collection through each iteration. Thus leaving the collection untouched and available for reuse after the loop.
fn main() { let names = vec!["Bob", "Frank", "Ferris"]; for name in names.iter() { match name { &"Ferris" => println!("There is a rustacean among us!"), // TODO ^ Try deleting the & and matching just "Ferris" _ => println!("Hello {}", name), } } println!("names: {:?}", names); }
into_iter
- This consumes the collection so that on each iteration the exact data is provided. Once the collection has been consumed it is no longer available for reuse as it has been 'moved' within the loop.
fn main() {
let names = vec!["Bob", "Frank", "Ferris"];
for name in names.into_iter() {
match name {
"Ferris" => println!("There is a rustacean among us!"),
_ => println!("Hello {}", name),
}
}
println!("names: {:?}", names);
// FIXME ^ Comment out this line
}
iter_mut
- This mutably borrows each element of the collection, allowing for the collection to be modified in place.
fn main() { let mut names = vec!["Bob", "Frank", "Ferris"]; for name in names.iter_mut() { *name = match name { &mut "Ferris" => "There is a rustacean among us!", _ => "Hello", } } println!("names: {:?}", names); }
In the above snippets note the type of match
branch, that is the key
difference in the types of iteration. The difference in type then of course
implies differing actions that are able to be performed.
See also:
match
Rust provides pattern matching via the match
keyword, which can be used like
a C switch
. The first matching arm is evaluated and all possible values must be
covered.
fn main() { let number = 13; // TODO ^ Try different values for `number` println!("Tell me about {}", number); match number { // Match a single value 1 => println!("One!"), // Match several values 2 | 3 | 5 | 7 | 11 => println!("This is a prime"), // TODO ^ Try adding 13 to the list of prime values // Match an inclusive range 13..=19 => println!("A teen"), // Handle the rest of cases _ => println!("Ain't special"), // TODO ^ Try commenting out this catch-all arm } let boolean = true; // Match is an expression too let binary = match boolean { // The arms of a match must cover all the possible values false => 0, true => 1, // TODO ^ Try commenting out one of these arms }; println!("{} -> {}", boolean, binary); }
Destructuring
A match
block can destructure items in a variety of ways.
tuples
Tuples can be destructured in a match
as follows:
fn main() { let triple = (0, -2, 3); // TODO ^ Try different values for `triple` println!("Tell me about {:?}", triple); // Match can be used to destructure a tuple match triple { // Destructure the second and third elements (0, y, z) => println!("First is `0`, `y` is {:?}, and `z` is {:?}", y, z), (1, ..) => println!("First is `1` and the rest doesn't matter"), // `..` can be the used ignore the rest of the tuple _ => println!("It doesn't matter what they are"), // `_` means don't bind the value to a variable } }
See also:
enums
An enum
is destructured similarly:
// `allow` required to silence warnings because only // one variant is used. #[allow(dead_code)] enum Color { // These 3 are specified solely by their name. Red, Blue, Green, // These likewise tie `u32` tuples to different names: color models. RGB(u32, u32, u32), HSV(u32, u32, u32), HSL(u32, u32, u32), CMY(u32, u32, u32), CMYK(u32, u32, u32, u32), } fn main() { let color = Color::RGB(122, 17, 40); // TODO ^ Try different variants for `color` println!("What color is it?"); // An `enum` can be destructured using a `match`. match color { Color::Red => println!("The color is Red!"), Color::Blue => println!("The color is Blue!"), Color::Green => println!("The color is Green!"), Color::RGB(r, g, b) => println!("Red: {}, green: {}, and blue: {}!", r, g, b), Color::HSV(h, s, v) => println!("Hue: {}, saturation: {}, value: {}!", h, s, v), Color::HSL(h, s, l) => println!("Hue: {}, saturation: {}, lightness: {}!", h, s, l), Color::CMY(c, m, y) => println!("Cyan: {}, magenta: {}, yellow: {}!", c, m, y), Color::CMYK(c, m, y, k) => println!("Cyan: {}, magenta: {}, yellow: {}, key (black): {}!", c, m, y, k), // Don't need another arm because all variants have been examined } }
See also:
#[allow(...)]
, color models and enum
pointers/ref
For pointers, a distinction needs to be made between destructuring
and dereferencing as they are different concepts which are used
differently from a language like C
.
- Dereferencing uses
*
- Destructuring uses
&
,ref
, andref mut
fn main() { // Assign a reference of type `i32`. The `&` signifies there // is a reference being assigned. let reference = &4; match reference { // If `reference` is pattern matched against `&val`, it results // in a comparison like: // `&i32` // `&val` // ^ We see that if the matching `&`s are dropped, then the `i32` // should be assigned to `val`. &val => println!("Got a value via destructuring: {:?}", val), } // To avoid the `&`, you dereference before matching. match *reference { val => println!("Got a value via dereferencing: {:?}", val), } // What if you don't start with a reference? `reference` was a `&` // because the right side was already a reference. This is not // a reference because the right side is not one. let _not_a_reference = 3; // Rust provides `ref` for exactly this purpose. It modifies the // assignment so that a reference is created for the element; this // reference is assigned. let ref _is_a_reference = 3; // Accordingly, by defining 2 values without references, references // can be retrieved via `ref` and `ref mut`. let value = 5; let mut mut_value = 6; // Use `ref` keyword to create a reference. match value { ref r => println!("Got a reference to a value: {:?}", r), } // Use `ref mut` similarly. match mut_value { ref mut m => { // Got a reference. Gotta dereference it before we can // add anything to it. *m += 10; println!("We added 10. `mut_value`: {:?}", m); }, } }
See also:
structs
Similarly, a struct
can be destructured as shown:
fn main() { struct Foo { x: (u32, u32), y: u32, } // Try changing the values in the struct to see what happens let foo = Foo { x: (1, 2), y: 3 }; match foo { Foo { x: (1, b), y } => println!("First of x is 1, b = {}, y = {} ", b, y), // you can destructure structs and rename the variables, // the order is not important Foo { y: 2, x: i } => println!("y is 2, i = {:?}", i), // and you can also ignore some variables: Foo { y, .. } => println!("y = {}, we don't care about x", y), // this will give an error: pattern does not mention field `x` //Foo { y } => println!("y = {}", y), } }
See also:
Guards
A match
guard can be added to filter the arm.
fn main() { let pair = (2, -2); // TODO ^ Try different values for `pair` println!("Tell me about {:?}", pair); match pair { (x, y) if x == y => println!("These are twins"), // The ^ `if condition` part is a guard (x, y) if x + y == 0 => println!("Antimatter, kaboom!"), (x, _) if x % 2 == 1 => println!("The first one is odd"), _ => println!("No correlation..."), } }
See also:
Binding
Indirectly accessing a variable makes it impossible to branch and use that
variable without re-binding. match
provides the @
sigil for binding values to
names:
// A function `age` which returns a `u32`. fn age() -> u32 { 15 } fn main() { println!("Tell me what type of person you are"); match age() { 0 => println!("I haven't celebrated my first birthday yet"), // Could `match` 1 ..= 12 directly but then what age // would the child be? Instead, bind to `n` for the // sequence of 1 ..= 12. Now the age can be reported. n @ 1 ..= 12 => println!("I'm a child of age {:?}", n), n @ 13 ..= 19 => println!("I'm a teen of age {:?}", n), // Nothing bound. Return the result. n => println!("I'm an old person of age {:?}", n), } }
You can also use binding to "destructure" enum
variants, such as Option
:
fn some_number() -> Option<u32> { Some(42) } fn main() { match some_number() { // Got `Some` variant, match if its value, bound to `n`, // is equal to 42. Some(n @ 42) => println!("The Answer: {}!", n), // Match any other number. Some(n) => println!("Not interesting... {}", n), // Match anything else (`None` variant). _ => (), } }
See also:
if let
For some use cases, when matching enums, match
is awkward. For example:
#![allow(unused)] fn main() { // Make `optional` of type `Option<i32>` let optional = Some(7); match optional { Some(i) => { println!("This is a really long string and `{:?}`", i); // ^ Needed 2 indentations just so we could destructure // `i` from the option. }, _ => {}, // ^ Required because `match` is exhaustive. Doesn't it seem // like wasted space? }; }
if let
is cleaner for this use case and in addition allows various
failure options to be specified:
fn main() { // All have type `Option<i32>` let number = Some(7); let letter: Option<i32> = None; let emoticon: Option<i32> = None; // The `if let` construct reads: "if `let` destructures `number` into // `Some(i)`, evaluate the block (`{}`). if let Some(i) = number { println!("Matched {:?}!", i); } // If you need to specify a failure, use an else: if let Some(i) = letter { println!("Matched {:?}!", i); } else { // Destructure failed. Change to the failure case. println!("Didn't match a number. Let's go with a letter!"); } // Provide an altered failing condition. let i_like_letters = false; if let Some(i) = emoticon { println!("Matched {:?}!", i); // Destructure failed. Evaluate an `else if` condition to see if the // alternate failure branch should be taken: } else if i_like_letters { println!("Didn't match a number. Let's go with a letter!"); } else { // The condition evaluated false. This branch is the default: println!("I don't like letters. Let's go with an emoticon :)!"); } }
In the same way, if let
can be used to match any enum value:
// Our example enum enum Foo { Bar, Baz, Qux(u32) } fn main() { // Create example variables let a = Foo::Bar; let b = Foo::Baz; let c = Foo::Qux(100); // Variable a matches Foo::Bar if let Foo::Bar = a { println!("a is foobar"); } // Variable b does not match Foo::Bar // So this will print nothing if let Foo::Bar = b { println!("b is foobar"); } // Variable c matches Foo::Qux which has a value // Similar to Some() in the previous example if let Foo::Qux(value) = c { println!("c is {}", value); } // Binding also works with `if let` if let Foo::Qux(value @ 100) = c { println!("c is one hundred"); } }
Another benefit is that if let
allows us to match non-parameterized enum variants. This is true even in cases where the enum doesn't implement or derive PartialEq
. In such cases if Foo::Bar == a
would fail to compile, because instances of the enum cannot be equated, however if let
will continue to work.
Would you like a challenge? Fix the following example to use if let
:
// This enum purposely neither implements nor derives PartialEq. // That is why comparing Foo::Bar == a fails below. enum Foo {Bar} fn main() { let a = Foo::Bar; // Variable a matches Foo::Bar if Foo::Bar == a { // ^-- this causes a compile-time error. Use `if let` instead. println!("a is foobar"); } }
See also:
while let
Similar to if let
, while let
can make awkward match
sequences
more tolerable. Consider the following sequence that increments i
:
#![allow(unused)] fn main() { // Make `optional` of type `Option<i32>` let mut optional = Some(0); // Repeatedly try this test. loop { match optional { // If `optional` destructures, evaluate the block. Some(i) => { if i > 9 { println!("Greater than 9, quit!"); optional = None; } else { println!("`i` is `{:?}`. Try again.", i); optional = Some(i + 1); } // ^ Requires 3 indentations! }, // Quit the loop when the destructure fails: _ => { break; } // ^ Why should this be required? There must be a better way! } } }
Using while let
makes this sequence much nicer:
fn main() { // Make `optional` of type `Option<i32>` let mut optional = Some(0); // This reads: "while `let` destructures `optional` into // `Some(i)`, evaluate the block (`{}`). Else `break`. while let Some(i) = optional { if i > 9 { println!("Greater than 9, quit!"); optional = None; } else { println!("`i` is `{:?}`. Try again.", i); optional = Some(i + 1); } // ^ Less rightward drift and doesn't require // explicitly handling the failing case. } // ^ `if let` had additional optional `else`/`else if` // clauses. `while let` does not have these. }
See also:
Fonksiyonlar
Fonksiyonlar fn
anahtar sözcükleriyle bildirilirler. Argümanları değişkenlerdeki gibi tip açıklamalıdır, ve, fonksiyon bir değer döndürürse dönüş türü bir oktan sonra bildirilmelidir ->
.
Fonksiyonlardaki son ifade dönüş değeri olarak kullanılacaktır.
Alternatif olarak return
ifadesi fonksiyonun içinden, döngülerin içinden ve hatta if
ifadelerinden bile daha önce bir değer döndürmek için kullanılabilir.
Fonksiyonları kullanarak FizzBuzz(basit bir algoritma türü)'ı yeniden yazalım!
// C/C++'taki gibi fonksiyon bildirim sırası diye bir kısıtlama yok! fn main() { // Fonksiyonu burada kullanabiliriz, ve sonra bir yerde bildiririz. fizzbuzz_to(100); } // Boolean değer döndüren fonksiyon fn is_divisible_by(lhs: u32, rhs: u32) -> bool { // Köşe durumu, erken dönüş if rhs == 0 { return false; } // Bu bir ifade, `return` anahtar kelimesi burada gerekli değil lhs % rhs == 0 } // Değer döndürmeyen fonksiyonlar,aslında birim tipini döndürürler `()` fn fizzbuzz(n: u32) -> () { if is_divisible_by(n, 15) { println!("fizzbuzz"); } else if is_divisible_by(n, 3) { println!("fizz"); } else if is_divisible_by(n, 5) { println!("buzz"); } else { println!("{}", n); } } // Fonksiyon `()` döndürdüğünde, dönüş tipi imzadan çıkartılabilir fn fizzbuzz_to(n: u32) { for n in 1..n + 1 { fizzbuzz(n); } }
Methods
Methods are functions attached to objects. These methods have access to the
data of the object and its other methods via the self
keyword. Methods are
defined under an impl
block.
struct Point { x: f64, y: f64, } // Implementation block, all `Point` methods go in here impl Point { // This is a static method // Static methods don't need to be called by an instance // These methods are generally used as constructors fn origin() -> Point { Point { x: 0.0, y: 0.0 } } // Another static method, taking two arguments: fn new(x: f64, y: f64) -> Point { Point { x: x, y: y } } } struct Rectangle { p1: Point, p2: Point, } impl Rectangle { // This is an instance method // `&self` is sugar for `self: &Self`, where `Self` is the type of the // caller object. In this case `Self` = `Rectangle` fn area(&self) -> f64 { // `self` gives access to the struct fields via the dot operator let Point { x: x1, y: y1 } = self.p1; let Point { x: x2, y: y2 } = self.p2; // `abs` is a `f64` method that returns the absolute value of the // caller ((x1 - x2) * (y1 - y2)).abs() } fn perimeter(&self) -> f64 { let Point { x: x1, y: y1 } = self.p1; let Point { x: x2, y: y2 } = self.p2; 2.0 * ((x1 - x2).abs() + (y1 - y2).abs()) } // This method requires the caller object to be mutable // `&mut self` desugars to `self: &mut Self` fn translate(&mut self, x: f64, y: f64) { self.p1.x += x; self.p2.x += x; self.p1.y += y; self.p2.y += y; } } // `Pair` owns resources: two heap allocated integers struct Pair(Box<i32>, Box<i32>); impl Pair { // This method "consumes" the resources of the caller object // `self` desugars to `self: Self` fn destroy(self) { // Destructure `self` let Pair(first, second) = self; println!("Destroying Pair({}, {})", first, second); // `first` and `second` go out of scope and get freed } } fn main() { let rectangle = Rectangle { // Static methods are called using double colons p1: Point::origin(), p2: Point::new(3.0, 4.0), }; // Instance methods are called using the dot operator // Note that the first argument `&self` is implicitly passed, i.e. // `rectangle.perimeter()` === `Rectangle::perimeter(&rectangle)` println!("Rectangle perimeter: {}", rectangle.perimeter()); println!("Rectangle area: {}", rectangle.area()); let mut square = Rectangle { p1: Point::origin(), p2: Point::new(1.0, 1.0), }; // Error! `rectangle` is immutable, but this method requires a mutable // object //rectangle.translate(1.0, 0.0); // TODO ^ Try uncommenting this line // Okay! Mutable objects can call mutable methods square.translate(1.0, 1.0); let pair = Pair(Box::new(1), Box::new(2)); pair.destroy(); // Error! Previous `destroy` call "consumed" `pair` //pair.destroy(); // TODO ^ Try uncommenting this line }
Closures
Closures are functions that can capture the enclosing environment. For example, a closure that captures the x variable:
|val| val + x
The syntax and capabilities of closures make them very convenient for on the fly usage. Calling a closure is exactly like calling a function. However, both input and return types can be inferred and input variable names must be specified.
Other characteristics of closures include:
- using
||
instead of()
around input variables. - optional body delimination (
{}
) for a single expression (mandatory otherwise). - the ability to capture the outer environment variables.
fn main() { // Increment via closures and functions. fn function (i: i32) -> i32 { i + 1 } // Closures are anonymous, here we are binding them to references // Annotation is identical to function annotation but is optional // as are the `{}` wrapping the body. These nameless functions // are assigned to appropriately named variables. let closure_annotated = |i: i32| -> i32 { i + 1 }; let closure_inferred = |i | i + 1 ; let i = 1; // Call the function and closures. println!("function: {}", function(i)); println!("closure_annotated: {}", closure_annotated(i)); println!("closure_inferred: {}", closure_inferred(i)); // A closure taking no arguments which returns an `i32`. // The return type is inferred. let one = || 1; println!("closure returning one: {}", one()); }
Capturing
Closures are inherently flexible and will do what the functionality requires to make the closure work without annotation. This allows capturing to flexibly adapt to the use case, sometimes moving and sometimes borrowing. Closures can capture variables:
- by reference:
&T
- by mutable reference:
&mut T
- by value:
T
They preferentially capture variables by reference and only go lower when required.
fn main() { use std::mem; let color = String::from("green"); // A closure to print `color` which immediately borrows (`&`) `color` and // stores the borrow and closure in the `print` variable. It will remain // borrowed until `print` is used the last time. // // `println!` only requires arguments by immutable reference so it doesn't // impose anything more restrictive. let print = || println!("`color`: {}", color); // Call the closure using the borrow. print(); // `color` can be borrowed immutably again, because the closure only holds // an immutable reference to `color`. let _reborrow = &color; print(); // A move or reborrow is allowed after the final use of `print` let _color_moved = color; let mut count = 0; // A closure to increment `count` could take either `&mut count` or `count` // but `&mut count` is less restrictive so it takes that. Immediately // borrows `count`. // // A `mut` is required on `inc` because a `&mut` is stored inside. Thus, // calling the closure mutates the closure which requires a `mut`. let mut inc = || { count += 1; println!("`count`: {}", count); }; // Call the closure using a mutable borrow. inc(); // The closure still mutably borrows `count` because it is called later. // An attempt to reborrow will lead to an error. // let _reborrow = &count; // ^ TODO: try uncommenting this line. inc(); // The closure no longer needs to borrow `&mut count`. Therefore, it is // possible to reborrow without an error let _count_reborrowed = &mut count; // A non-copy type. let movable = Box::new(3); // `mem::drop` requires `T` so this must take by value. A copy type // would copy into the closure leaving the original untouched. // A non-copy must move and so `movable` immediately moves into // the closure. let consume = || { println!("`movable`: {:?}", movable); mem::drop(movable); }; // `consume` consumes the variable so this can only be called once. consume(); // consume(); // ^ TODO: Try uncommenting this line. }
Using move
before vertical pipes forces closure
to take ownership of captured variables:
fn main() { // `Vec` has non-copy semantics. let haystack = vec![1, 2, 3]; let contains = move |needle| haystack.contains(needle); println!("{}", contains(&1)); println!("{}", contains(&4)); // println!("There're {} elements in vec", haystack.len()); // ^ Uncommenting above line will result in compile-time error // because borrow checker doesn't allow re-using variable after it // has been moved. // Removing `move` from closure's signature will cause closure // to borrow _haystack_ variable immutably, hence _haystack_ is still // available and uncommenting above line will not cause an error. }
See also:
Box
and std::mem::drop
As input parameters
While Rust chooses how to capture variables on the fly mostly without type
annotation, this ambiguity is not allowed when writing functions. When
taking a closure as an input parameter, the closure's complete type must be
annotated using one of a few traits
. In order of decreasing restriction,
they are:
Fn
: the closure captures by reference (&T
)FnMut
: the closure captures by mutable reference (&mut T
)FnOnce
: the closure captures by value (T
)
On a variable-by-variable basis, the compiler will capture variables in the least restrictive manner possible.
For instance, consider a parameter annotated as FnOnce
. This specifies
that the closure may capture by &T
, &mut T
, or T
, but the compiler
will ultimately choose based on how the captured variables are used in the
closure.
This is because if a move is possible, then any type of borrow should also
be possible. Note that the reverse is not true. If the parameter is
annotated as Fn
, then capturing variables by &mut T
or T
are not
allowed.
In the following example, try swapping the usage of Fn
, FnMut
, and
FnOnce
to see what happens:
// A function which takes a closure as an argument and calls it. // <F> denotes that F is a "Generic type parameter" fn apply<F>(f: F) where // The closure takes no input and returns nothing. F: FnOnce() { // ^ TODO: Try changing this to `Fn` or `FnMut`. f(); } // A function which takes a closure and returns an `i32`. fn apply_to_3<F>(f: F) -> i32 where // The closure takes an `i32` and returns an `i32`. F: Fn(i32) -> i32 { f(3) } fn main() { use std::mem; let greeting = "hello"; // A non-copy type. // `to_owned` creates owned data from borrowed one let mut farewell = "goodbye".to_owned(); // Capture 2 variables: `greeting` by reference and // `farewell` by value. let diary = || { // `greeting` is by reference: requires `Fn`. println!("I said {}.", greeting); // Mutation forces `farewell` to be captured by // mutable reference. Now requires `FnMut`. farewell.push_str("!!!"); println!("Then I screamed {}.", farewell); println!("Now I can sleep. zzzzz"); // Manually calling drop forces `farewell` to // be captured by value. Now requires `FnOnce`. mem::drop(farewell); }; // Call the function which applies the closure. apply(diary); // `double` satisfies `apply_to_3`'s trait bound let double = |x| 2 * x; println!("3 doubled: {}", apply_to_3(double)); }
See also:
std::mem::drop
, Fn
, FnMut
, Generics, where and FnOnce
Type anonymity
Closures succinctly capture variables from enclosing scopes. Does this have any consequences? It surely does. Observe how using a closure as a function parameter requires generics, which is necessary because of how they are defined:
#![allow(unused)] fn main() { // `F` must be generic. fn apply<F>(f: F) where F: FnOnce() { f(); } }
When a closure is defined, the compiler implicitly creates a new
anonymous structure to store the captured variables inside, meanwhile
implementing the functionality via one of the traits
: Fn
, FnMut
, or
FnOnce
for this unknown type. This type is assigned to the variable which
is stored until calling.
Since this new type is of unknown type, any usage in a function will require
generics. However, an unbounded type parameter <T>
would still be ambiguous
and not be allowed. Thus, bounding by one of the traits
: Fn
, FnMut
, or
FnOnce
(which it implements) is sufficient to specify its type.
// `F` must implement `Fn` for a closure which takes no // inputs and returns nothing - exactly what is required // for `print`. fn apply<F>(f: F) where F: Fn() { f(); } fn main() { let x = 7; // Capture `x` into an anonymous type and implement // `Fn` for it. Store it in `print`. let print = || println!("{}", x); apply(print); }
See also:
A thorough analysis, Fn
, FnMut
,
and FnOnce
Input functions
Since closures may be used as arguments, you might wonder if the same can be said about functions. And indeed they can! If you declare a function that takes a closure as parameter, then any function that satisfies the trait bound of that closure can be passed as a parameter.
// Define a function which takes a generic `F` argument // bounded by `Fn`, and calls it fn call_me<F: Fn()>(f: F) { f(); } // Define a wrapper function satisfying the `Fn` bound fn function() { println!("I'm a function!"); } fn main() { // Define a closure satisfying the `Fn` bound let closure = || println!("I'm a closure!"); call_me(closure); call_me(function); }
As an additional note, the Fn
, FnMut
, and FnOnce
traits
dictate how
a closure captures variables from the enclosing scope.
See also:
As output parameters
Closures as input parameters are possible, so returning closures as
output parameters should also be possible. However, anonymous
closure types are, by definition, unknown, so we have to use
impl Trait
to return them.
The valid traits for returning a closure are:
Fn
FnMut
FnOnce
Beyond this, the move
keyword must be used, which signals that all captures
occur by value. This is required because any captures by reference would be
dropped as soon as the function exited, leaving invalid references in the
closure.
fn create_fn() -> impl Fn() { let text = "Fn".to_owned(); move || println!("This is a: {}", text) } fn create_fnmut() -> impl FnMut() { let text = "FnMut".to_owned(); move || println!("This is a: {}", text) } fn create_fnonce() -> impl FnOnce() { let text = "FnOnce".to_owned(); move || println!("This is a: {}", text) } fn main() { let fn_plain = create_fn(); let mut fn_mut = create_fnmut(); let fn_once = create_fnonce(); fn_plain(); fn_mut(); fn_once(); }
See also:
Fn
, FnMut
, Generics and impl Trait.
Examples in std
This section contains a few examples of using closures from the std
library.
Iterator::any
Iterator::any
is a function which when passed an iterator, will return
true
if any element satisfies the predicate. Otherwise false
. Its
signature:
pub trait Iterator {
// The type being iterated over.
type Item;
// `any` takes `&mut self` meaning the caller may be borrowed
// and modified, but not consumed.
fn any<F>(&mut self, f: F) -> bool where
// `FnMut` meaning any captured variable may at most be
// modified, not consumed. `Self::Item` states it takes
// arguments to the closure by value.
F: FnMut(Self::Item) -> bool {}
}
fn main() { let vec1 = vec![1, 2, 3]; let vec2 = vec![4, 5, 6]; // `iter()` for vecs yields `&i32`. Destructure to `i32`. println!("2 in vec1: {}", vec1.iter() .any(|&x| x == 2)); // `into_iter()` for vecs yields `i32`. No destructuring required. println!("2 in vec2: {}", vec2.into_iter().any(| x| x == 2)); let array1 = [1, 2, 3]; let array2 = [4, 5, 6]; // `iter()` for arrays yields `&i32`. println!("2 in array1: {}", array1.iter() .any(|&x| x == 2)); // `into_iter()` for arrays unusually yields `&i32`. println!("2 in array2: {}", array2.into_iter().any(|&x| x == 2)); }
See also:
Searching through iterators
Iterator::find
is a function which iterates over an iterator and searches for the
first value which satisfies some condition. If none of the values satisfy the
condition, it returns None
. Its signature:
pub trait Iterator {
// The type being iterated over.
type Item;
// `find` takes `&mut self` meaning the caller may be borrowed
// and modified, but not consumed.
fn find<P>(&mut self, predicate: P) -> Option<Self::Item> where
// `FnMut` meaning any captured variable may at most be
// modified, not consumed. `&Self::Item` states it takes
// arguments to the closure by reference.
P: FnMut(&Self::Item) -> bool {}
}
fn main() { let vec1 = vec![1, 2, 3]; let vec2 = vec![4, 5, 6]; // `iter()` for vecs yields `&i32`. let mut iter = vec1.iter(); // `into_iter()` for vecs yields `i32`. let mut into_iter = vec2.into_iter(); // `iter()` for vecs yields `&i32`, and we want to reference one of its // items, so we have to destructure `&&i32` to `i32` println!("Find 2 in vec1: {:?}", iter .find(|&&x| x == 2)); // `into_iter()` for vecs yields `i32`, and we want to reference one of // its items, so we have to destructure `&i32` to `i32` println!("Find 2 in vec2: {:?}", into_iter.find(| &x| x == 2)); let array1 = [1, 2, 3]; let array2 = [4, 5, 6]; // `iter()` for arrays yields `&i32` println!("Find 2 in array1: {:?}", array1.iter() .find(|&&x| x == 2)); // `into_iter()` for arrays unusually yields `&i32` println!("Find 2 in array2: {:?}", array2.into_iter().find(|&&x| x == 2)); }
Iterator::find
gives you a reference to the item. But if you want the index of the
item, use Iterator::position
.
fn main() { let vec = vec![1, 9, 3, 3, 13, 2]; let index_of_first_even_number = vec.iter().position(|x| x % 2 == 0); assert_eq!(index_of_first_even_number, Some(5)); let index_of_first_negative_number = vec.iter().position(|x| x < &0); assert_eq!(index_of_first_negative_number, None); }
See also:
std::iter::Iterator::rposition
Higher Order Functions
Rust provides Higher Order Functions (HOF). These are functions that take one or more functions and/or produce a more useful function. HOFs and lazy iterators give Rust its functional flavor.
fn is_odd(n: u32) -> bool { n % 2 == 1 } fn main() { println!("Find the sum of all the squared odd numbers under 1000"); let upper = 1000; // Imperative approach // Declare accumulator variable let mut acc = 0; // Iterate: 0, 1, 2, ... to infinity for n in 0.. { // Square the number let n_squared = n * n; if n_squared >= upper { // Break loop if exceeded the upper limit break; } else if is_odd(n_squared) { // Accumulate value, if it's odd acc += n_squared; } } println!("imperative style: {}", acc); // Functional approach let sum_of_squared_odd_numbers: u32 = (0..).map(|n| n * n) // All natural numbers squared .take_while(|&n_squared| n_squared < upper) // Below upper limit .filter(|&n_squared| is_odd(n_squared)) // That are odd .fold(0, |acc, n_squared| acc + n_squared); // Sum them println!("functional style: {}", sum_of_squared_odd_numbers); }
Option and Iterator implement their fair share of HOFs.
Diverging functions
Diverging functions never return. They are marked using !
, which is an empty type.
#![allow(unused)] fn main() { fn foo() -> ! { panic!("This call never returns."); } }
As opposed to all the other types, this one cannot be instantiated, because the
set of all possible values this type can have is empty. Note that, it is
different from the ()
type, which has exactly one possible value.
For example, this function returns as usual, although there is no information in the return value.
fn some_fn() { () } fn main() { let a: () = some_fn(); println!("This function returns and you can see this line.") }
As opposed to this function, which will never return the control back to the caller.
#![feature(never_type)]
fn main() {
let x: ! = panic!("This call never returns.");
println!("You will never see this line!");
}
Although this might seem like an abstract concept, it is in fact very useful and
often handy. The main advantage of this type is that it can be cast to any other
one and therefore used at places where an exact type is required, for instance
in match
branches. This allows us to write code like this:
fn main() { fn sum_odd_numbers(up_to: u32) -> u32 { let mut acc = 0; for i in 0..up_to { // Notice that the return type of this match expression must be u32 // because of the type of the "addition" variable. let addition: u32 = match i%2 == 1 { // The "i" variable is of type u32, which is perfectly fine. true => i, // On the other hand, the "continue" expression does not return // u32, but it is still fine, because it never returns and therefore // does not violate the type requirements of the match expression. false => continue, }; acc += addition; } acc } println!("Sum of odd numbers up to 9 (excluding): {}", sum_odd_numbers(9)); }
It is also the return type of functions that loop forever (e.g. loop {}
) like
network servers or functions that terminates the process (e.g. exit()
).
Modüller
Rust kodu hiyerarşik olarak mantıksal birimlere(modüller) ayıran güçlü modül sistemi sağlar, ve tabii ki beraberinde görünürlük yönetimi(public/private)(genel/özel) de sağlar.
Bir modül şu öğelerin bütünüdür: fonksiyonlar, struct'lar(yapı), nitelikler, impl
blokları,
ve diğer modüller.
Visibility
By default, the items in a module have private visibility, but this can be
overridden with the pub
modifier. Only the public items of a module can be
accessed from outside the module scope.
// A module named `my_mod` mod my_mod { // Items in modules default to private visibility. fn private_function() { println!("called `my_mod::private_function()`"); } // Use the `pub` modifier to override default visibility. pub fn function() { println!("called `my_mod::function()`"); } // Items can access other items in the same module, // even when private. pub fn indirect_access() { print!("called `my_mod::indirect_access()`, that\n> "); private_function(); } // Modules can also be nested pub mod nested { pub fn function() { println!("called `my_mod::nested::function()`"); } #[allow(dead_code)] fn private_function() { println!("called `my_mod::nested::private_function()`"); } // Functions declared using `pub(in path)` syntax are only visible // within the given path. `path` must be a parent or ancestor module pub(in crate::my_mod) fn public_function_in_my_mod() { print!("called `my_mod::nested::public_function_in_my_mod()`, that\n> "); public_function_in_nested(); } // Functions declared using `pub(self)` syntax are only visible within // the current module, which is the same as leaving them private pub(self) fn public_function_in_nested() { println!("called `my_mod::nested::public_function_in_nested()`"); } // Functions declared using `pub(super)` syntax are only visible within // the parent module pub(super) fn public_function_in_super_mod() { println!("called `my_mod::nested::public_function_in_super_mod()`"); } } pub fn call_public_function_in_my_mod() { print!("called `my_mod::call_public_function_in_my_mod()`, that\n> "); nested::public_function_in_my_mod(); print!("> "); nested::public_function_in_super_mod(); } // pub(crate) makes functions visible only within the current crate pub(crate) fn public_function_in_crate() { println!("called `my_mod::public_function_in_crate()`"); } // Nested modules follow the same rules for visibility mod private_nested { #[allow(dead_code)] pub fn function() { println!("called `my_mod::private_nested::function()`"); } // Private parent items will still restrict the visibility of a child item, // even if it is declared as visible within a bigger scope. #[allow(dead_code)] pub(crate) fn restricted_function() { println!("called `my_mod::private_nested::restricted_function()`"); } } } fn function() { println!("called `function()`"); } fn main() { // Modules allow disambiguation between items that have the same name. function(); my_mod::function(); // Public items, including those inside nested modules, can be // accessed from outside the parent module. my_mod::indirect_access(); my_mod::nested::function(); my_mod::call_public_function_in_my_mod(); // pub(crate) items can be called from anywhere in the same crate my_mod::public_function_in_crate(); // pub(in path) items can only be called from within the module specified // Error! function `public_function_in_my_mod` is private //my_mod::nested::public_function_in_my_mod(); // TODO ^ Try uncommenting this line // Private items of a module cannot be directly accessed, even if // nested in a public module: // Error! `private_function` is private //my_mod::private_function(); // TODO ^ Try uncommenting this line // Error! `private_function` is private //my_mod::nested::private_function(); // TODO ^ Try uncommenting this line // Error! `private_nested` is a private module //my_mod::private_nested::function(); // TODO ^ Try uncommenting this line // Error! `private_nested` is a private module //my_mod::private_nested::restricted_function(); // TODO ^ Try uncommenting this line }
Struct visibility
Structs have an extra level of visibility with their fields. The visibility
defaults to private, and can be overridden with the pub
modifier. This
visibility only matters when a struct is accessed from outside the module
where it is defined, and has the goal of hiding information (encapsulation).
mod my { // A public struct with a public field of generic type `T` pub struct OpenBox<T> { pub contents: T, } // A public struct with a private field of generic type `T` #[allow(dead_code)] pub struct ClosedBox<T> { contents: T, } impl<T> ClosedBox<T> { // A public constructor method pub fn new(contents: T) -> ClosedBox<T> { ClosedBox { contents: contents, } } } } fn main() { // Public structs with public fields can be constructed as usual let open_box = my::OpenBox { contents: "public information" }; // and their fields can be normally accessed. println!("The open box contains: {}", open_box.contents); // Public structs with private fields cannot be constructed using field names. // Error! `ClosedBox` has private fields //let closed_box = my::ClosedBox { contents: "classified information" }; // TODO ^ Try uncommenting this line // However, structs with private fields can be created using // public constructors let _closed_box = my::ClosedBox::new("classified information"); // and the private fields of a public struct cannot be accessed. // Error! The `contents` field is private //println!("The closed box contains: {}", _closed_box.contents); // TODO ^ Try uncommenting this line }
See also:
The use
declaration
The use
declaration can be used to bind a full path to a new name, for easier
access. It is often used like this:
use crate::deeply::nested::{
my_first_function,
my_second_function,
AndATraitType
};
fn main() {
my_first_function();
}
You can use the as
keyword to bind imports to a different name:
// Bind the `deeply::nested::function` path to `other_function`. use deeply::nested::function as other_function; fn function() { println!("called `function()`"); } mod deeply { pub mod nested { pub fn function() { println!("called `deeply::nested::function()`"); } } } fn main() { // Easier access to `deeply::nested::function` other_function(); println!("Entering block"); { // This is equivalent to `use deeply::nested::function as function`. // This `function()` will shadow the outer one. use crate::deeply::nested::function; // `use` bindings have a local scope. In this case, the // shadowing of `function()` is only in this block. function(); println!("Leaving block"); } function(); }
super
and self
The super
and self
keywords can be used in the path to remove ambiguity
when accessing items and to prevent unnecessary hardcoding of paths.
fn function() { println!("called `function()`"); } mod cool { pub fn function() { println!("called `cool::function()`"); } } mod my { fn function() { println!("called `my::function()`"); } mod cool { pub fn function() { println!("called `my::cool::function()`"); } } pub fn indirect_call() { // Let's access all the functions named `function` from this scope! print!("called `my::indirect_call()`, that\n> "); // The `self` keyword refers to the current module scope - in this case `my`. // Calling `self::function()` and calling `function()` directly both give // the same result, because they refer to the same function. self::function(); function(); // We can also use `self` to access another module inside `my`: self::cool::function(); // The `super` keyword refers to the parent scope (outside the `my` module). super::function(); // This will bind to the `cool::function` in the *crate* scope. // In this case the crate scope is the outermost scope. { use crate::cool::function as root_function; root_function(); } } } fn main() { my::indirect_call(); }
File hierarchy
Modules can be mapped to a file/directory hierarchy. Let's break down the visibility example in files:
$ tree .
.
|-- my
| |-- inaccessible.rs
| |-- mod.rs
| `-- nested.rs
`-- split.rs
In split.rs
:
// This declaration will look for a file named `my.rs` or `my/mod.rs` and will
// insert its contents inside a module named `my` under this scope
mod my;
fn function() {
println!("called `function()`");
}
fn main() {
my::function();
function();
my::indirect_access();
my::nested::function();
}
In my/mod.rs
:
// Similarly `mod inaccessible` and `mod nested` will locate the `nested.rs`
// and `inaccessible.rs` files and insert them here under their respective
// modules
mod inaccessible;
pub mod nested;
pub fn function() {
println!("called `my::function()`");
}
fn private_function() {
println!("called `my::private_function()`");
}
pub fn indirect_access() {
print!("called `my::indirect_access()`, that\n> ");
private_function();
}
In my/nested.rs
:
pub fn function() {
println!("called `my::nested::function()`");
}
#[allow(dead_code)]
fn private_function() {
println!("called `my::nested::private_function()`");
}
In my/inaccessible.rs
:
#[allow(dead_code)]
pub fn public_function() {
println!("called `my::inaccessible::public_function()`");
}
Let's check that things still work as before:
$ rustc split.rs && ./split
called `my::function()`
called `function()`
called `my::indirect_access()`, that
> called `my::private_function()`
called `my::nested::function()`
Crate'ler(Sandıklar)
Crate Rust'ta bir derleme birimidir. rustc herhangi_bir_dosya.rs
çağrıldığında,
herhangi_bir_dosya.rs
crate dosyası olarak kabul edilir. Eğer herhangi_bir_dosya.rs
'da mod
bildirimi varsa, daha sonra modül dosyalarının içeriği derleyici üzerinde çalışmadan önce crate dosyasındaki mod
bildirimlerinin bulunduğu yere eklenir. Diğer bir deyişle, modüller ayrı ayrı derlenmez sadece crate'ler(sandıklar) derlenir.
Bir crate bir ikili dosyaya veya kütüphaneye derlenebilir. Varsayılan olarak, rustc
bir crate'den bir ikili dosya üretecektir. Bu davranış --crate-type
bayrağını lib
'e ileterek geçersiz kılınabilir.
Kütüphane Oluşturmak
Bir kütüphane oluşturalım, ve sonra onu başka bir crate'e bağlayacağımızı görelim.
pub fn public_function() {
println!("called rary's `public_function()`");
}
fn private_function() {
println!("called rary's `private_function()`");
}
pub fn indirect_access() {
print!("called rary's `indirect_access()`, that\n> ");
private_function();
}
$ rustc --crate-type=lib rary.rs
$ ls lib*
library.rlib
Kütüphaneler "lib" ön ekiyle başlarlar, ve varsayılan olarak crate dosyalarının adını alırlar, ama bu varsayılan ad, --crate-name
seçeneği ile rustc
'ye iletilerek veya crate_name
özelliği kullanılarak geçersiz kılınabilir.
Bir Kütüphaneyi Kullanmak
Bir crate'i yeni bir kütüphaneye bağlamak için rustc
'nin --extern
bayrağını kullanabilirsiniz. Tüm öğeler daha sonra kütüphaneyle aynı adda olan bir modülün altına aktarılacaktır
Bu modül genellikle diğer modüllerle aynı şekilde davranır.
// extern crate rary; // Rust 2015 sürümü veya öncesi için gerekli olabilir
fn main() {
rary::public_function();
// Hata alınır! `private_function` gizlidir
//rary::private_function();
rary::indirect_access();
}
# Where library.rlib is the path to the compiled library, assumed that it's
# in the same directory here:
$ rustc executable.rs --extern rary=library.rlib --edition=2018 && ./executable
called rary's `public_function()`
called rary's `indirect_access()`, that
> called rary's `private_function()`
Cargo
cargo
Rust'ın resmi paket yönetim aracıdır. Kod kalitesini geliştirmek ve geliştirici hızını artırmak için birçok yararlı özelliğe sahiptir! Bunlardan bazıları:
- Bağlılık yönetimi ve crates.io (resmi Rust paket kaydı) ile entegrasyon
- Birim(unit) testler hakkında farkındalık
- Kriterler(benchmark) hakkında farkındalık
Bu bölümde bazı hızlı temel bilgiler ele alınacaktır, daha kapsamlı bilgilere İngilizce Cargo Kitabı ile erişebilirsiniz.
Bağımlılıklar
Çoğu programın bazı kütüphanelere bağımlılıkları vardır. Hiç bağımlılıkları elle yönettiyseniz, bunun ne kadar acı verici olabileceğini tahmin edersiniz. Şanslıyız ki, Rust ekosistemi cargo
ile standart olarak geliyor! cargo
bir proje için bağımlılıkları yönetebilir.
Yeni bir Rust projesi oluşturmak için,
# A binary
cargo new foo
# OR A library
cargo new --lib foo
Bu bölümün geri kalanı için, bir kütüphane yerine bir ikili yaptığımızı varsayalım, ama tüm kavramlarımız aynı.
Yukarıdaki komutlardan sonra, aşağıdaki gibi bir dosya hiyerarşisi görmelisiniz:
foo
├── Cargo.toml
└── src
└── main.rs
main.rs
yeni projenizin root(kök/ana) kaynak dosyasıdır -- yeni bir şey yoktur.
Cargo.toml
bu proje için cargo
yapılandırma dosyasıdır (foo
). İçine bakarsanız, şuna benzer bir şey görürsünüz:
[package]
name = "foo"
version = "0.1.0"
authors = ["mark"]
[dependencies]
name
alanı [package]
altındaki projenin adını belirler. Crate'i yayınlarsanız crates.io
tarafından kullanılır(daha sonra anlatılacaktır). Ayrıca, derlediğinizde çıktı ikilisinin de adıdır.
version
alanı Semantic Versioning(Anlamsal Sürümlendirme) kullanan crate sürüm numarasıdır.
authors
alanı, crate'i yayınlarken kullanılan yazarların listesidir.
[dependencies]
alanı projenize bağımlılık eklemenizi sağlar.
Örneğin, programınızın harika bir komut satırı arayüzüne sahip olmasını istediğinizi varsayalım. crates.io (resmi Rust paket kayıtları)'da bir sürü güzel paket bulabilirsiniz. Popüler bir seçim clap'tir.
Bu yazı boyunca, clap
'in en son sürümü 2.27.1
'dir. Programımıza bir bağımlılık eklemek için,
Cargo.toml
dosyamızda [dependencies]
: clap = "2.27.1"
şeklinde basitçe ekleriz. İşte budur! Artık programınızda
clap
kullanmaya başlayabilirsiniz.
cargo
bağımlılıkların özel tipleri. Ufak bir özetleme:
[package]
name = "foo"
version = "0.1.0"
authors = ["mark"]
[dependencies]
clap = "2.27.1" # from crates.io
rand = { git = "https://github.com/rust-lang-nursery/rand" } # from online repo
bar = { path = "../bar" } # from a path in the local filesystem
cargo
bir bağımlılık yöneticisinden daha fazlasıdır. Mevcut tüm konfigürasyon seçenekleri
Cargo.toml
'deki format belirleyicide listelenmiştir.
Projemizi oluşturmak için, proje dizininde herhangi bir yerde (alt dizinler de dahil!) cargo'yu çalıştırırız. Aynı zamanda cargo run
diyerek de build edip çalıştırabiliriz. Bu komutların tüm bağımlılıkları çözeceğine, gerekirse crate'leri indireceğine ve crate'iniz de dahil her şeyi oluşturacağını unutmayın! (Çoktan build edilmiş bir şeyi tekrar build ettiğini unutmayın make
'e benzer şekilde).
İşte! Hepsi bu kadar!
Kurallar
Önceki bölümde, aşağıdaki dizin hiyerarşisini görmüştük:
foo
├── Cargo.toml
└── src
└── main.rs
Yine de aynı projede iki ikiliye ihtiyacımız olduğunu varsayalım. Ne olacak?
cargo
nun bunu desteklediğini görürüz. Varsayılan ikili dosya ismi daha önce de gördüğünüz gibi main
'dir, ama bunları bir bin/
dizinine yerleştirerek ek ikili dosyalar ekleyebilirsiniz:
foo
├── Cargo.toml
└── src
├── main.rs
└── bin
└── my_other_bin.rs
cargo
ya varsayılan veya diğer ikili dosyaların aksine bu ikiliyi derlemesini veya çalıştırmasını söylemek için sadece cargo
dan --bin my_other_bin
bayrağını geçiyoruz(pass ediyoruz), burada my_other_bin
çalışmak istediğimiz ikili dosyanın adıdır.
Extra binaries(ekstra ikili)'lere ek olarak cargo
kıyaslama(benchmark) testler ve örnekler gibi daha fazla özelliği destekler.
Gelecek bölümde, test(deneme)lere daha yakından bakacağız.
Test
Bildiğiniz gibi, test herhangi bir yazılımın ayrılmaz bir parçasıdır! Rust birim ve entegrasyon testi için birinci sınıf desteğe sahiptir (resmi dokümandaki bu bölüme bakın.
Yukarıda bağlantılı test bölümlerinden, birim testleri ve entegrasyon testlerinin nasıl yazılacağını görüyoruz. Organizasyonel olarak birim testlerini test ettikleri modüllere ve entegrasyon testlerini kendini tests/
dizinine yerleştirebiliriz:
foo
├── Cargo.toml
├── src
│ └── main.rs
└── tests
├── my_test.rs
└── my_other_test.rs
tests
dizinindeki tüm dosyalar ayrı bir entegrasyon testidir.
cargo
yapısından gelen özelliğiyle tüm testlerinizi çalıştırmak için kolay yol sunar!
$ cargo test
Şöyle bir çıktı alırsınız:
$ cargo test
Compiling blah v0.1.0 (file:///nobackup/blah)
Finished dev [unoptimized + debuginfo] target(s) in 0.89 secs
Running target/debug/deps/blah-d3b32b97275ec472
running 3 tests
test test_bar ... ok
test test_baz ... ok
test test_foo_bar ... ok
test test_foo ... ok
test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Ayrıca adı bir desenle(pattern ile) eşleşen testleri de çalıştırabilirsiniz:
$ cargo test test_foo
$ cargo test test_foo
Compiling blah v0.1.0 (file:///nobackup/blah)
Finished dev [unoptimized + debuginfo] target(s) in 0.35 secs
Running target/debug/deps/blah-d3b32b97275ec472
running 2 tests
test test_foo ... ok
test test_foo_bar ... ok
test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 2 filtered out
Bir uyarı: Cargo aynı anda birden fazla test yapabilir, bu yüzden birbirleriyle yarışmadıklarından emin olun. Örneğin, hepsi bir dosyaya çıktı veriyorsa, onları farklı dosyalara yazdırmalısınız.
Betik(Script) Oluşturmak
Bazen cargo
ile normal oluşturmalar yeterli olmaz. Belki cargo
başarılı bir şekilde derlenmeden önce crate'inizin bazı ön koşullara, veya derlenmesi gereken bazı yerel kodlara ihtiyacı vardır. Bu problemi çözmek için Cargo'nun çalıştırabileceği bazı betikler yazarız.
Paketinize betik eklemek için, Cargo.toml
dosyasında aşağıdaki gibi belirtilebilir:
[package]
...
build = "build.rs"
Aksi halde Cargo varsayılan olarak proje dizinindeki build.rs
dosyasını kullanacaktır.
Yazılmış betiği nasıl kullanırız
Betik paketteki herhangi bir şeyi derlemeden önce derlenecek ve çağrılacak başka bir Rust dosyasıdır. Dolayısıyla crate'inizin ön koşullarını yerine getirmek için kullanılabilir.
Cargo betiğe, burada belirtilen ve kullanılabilecek ortam değişkenleri aracılığıyla input(girdi)'lar sağlar.
Betik, stdout aracılığıyla output(çıktı) sağlar. Tüm satırlar
target/debug/build/<pkg>/output
konumuna yazılır. Dahası, cargo:
yla ön eklenmiş satırlar: doğrudan cargo tarafından yorumlanacaktır ve bu nedenle paketin derlenmesi için parametreleri tanımlamak için kullanılabilir.
Daha ileri seviyede tanım ve örnekler için İngilizce Cargo kitabından bir bölüm.
Özellikler
Bir özellik, bazı modüllere, crate(sandık)'e veya öğeye uygulanan meta(üst) veridir. Bu metadata(üst veri) şunlar için kullanılır:
- koşullu kod derlenmesi
- crate adını, sürümünü ve tipini (ikili veya kütüphane)
- [lintleri] devre dışı bırak lint (uyarılar)
- derleyici özelliklerini etkinleştir (macro'lar, glob içe aktarımlar vb.)
- yabancı bir kütüphaneye bağlantı
- fonksiyonları unit(birim) testi olarak işaretleme
- fonksiyonları bir karşılaştırmanın parçası olarak işaretleme
Özellikler bütün bir crate'e başvurduğunda, söz dizimi #![crate_attribute]
,
ve bir modül veya öğeye başvurduğunda, söz dizimi #[item_attribute]
(eksiğin farkına varın !
).
Özellikler farklı söz dizimleriyle argümanlar da alabilirler:
#[attribute = "deger"]
#[attribute(key = "deger")]
#[attribute(deger)]
Özellikler çoklu değer alabilir ve çoklu satırla ayrılabilirler de:
#[attribute(deger, deger2)]
#[attribute(deger, deger2, deger3,
deger4, deger5)]
dead_code
Derleyici, kullanılmayan fonksiyonlar hakkında uyarı verecek bir dead_code
lint'i sağlar. Bir özellik lint'i devre dışı bırakmak için kullanılabilir.
fn used_function() {} // `#[allow(dead_code)]` , `dead_code` lint'ini devre dışı bırakan bir özelliktir #[allow(dead_code)] fn unused_function() {} fn noisy_unused_function() {} // FIXME(Daha iyi yapılabilir) ^ Uyarıyı bastırmak için bir özellik ekleyin fn main() { used_function(); }
Gerçek programlamalarda dead code(ölü kod)'u ortadan kaldırmanız gerektiğini unutmayın. Bu örneklerde, örneklerin etkileşimli doğası nedeniyle bazı yerlerde ölü koda izin vereceğiz.
Crate'ler (Sandıklar)
crate_type
özelliği, derleyiciye crate'in bir binary(ikili) dosya mı yoksa kütüphane dosyası mı olduğunu bildirmek için kullanılabilir, (ve hatta hangi tipte bir kütüphane olduğunu), ve crate_name
özelliği, crate'in adını ayarlamak için kullanılabilir.
Bununla birlikte, Rust paket yöneticisi Cargo kullanırken hem crate_type
hem de crate_name
özelliklerinin hiçbir etkisi olmadığını unutmamak önemlidir. Cargo, Rust projelerinin büyük çoğunluğunda kullanıldığından, crate_type
ve crate_name
'in gerçek dünyadaki kullanımlarının göreli olarak sınırlı olduğu anlamına gelir.
// Bu crate bir kütüphanedir(library) #![crate_type = "lib"] // Bu kütüphanenin adı "rary"dir #![crate_name = "rary"] pub fn public_function() { println!("called rary's `public_function()`"); } fn private_function() { println!("called rary's `private_function()`"); } pub fn indirect_access() { print!("called rary's `indirect_access()`, that\n> "); private_function(); }
crate_type
özelliği kullanıldığında, artık --crate-type
bayrağını rustc
iletmek gerekmez.
$ rustc lib.rs
$ ls lib*
library.rlib
cfg
Konfigürasyon koşullu kontrolleri iki farklı operatör aracılığıyla mümkündür:
cfg
özelliği:#[cfg(...)]
özellik konumundaykencfg!
macro'su:cfg!(...)
boolean ifadeyken
Birincisi koşullu derlemeyi mümkün kılarken, ikincisi koşullu olarak true
(doğru) veya false
(yanlış) değişmez değerlerle çalışma zamanında kontrollere izin verir. Her ikisi de aynı söz dizimini kullanır.
// Bu fonksiyon yalnızca hedef işletim sistemi linux ise derlenir #[cfg(target_os = "linux")] fn are_you_on_linux() { println!("You are running linux!"); } // Ve bu fonksiyon yalnızca hedef işletim sistemi linux *değilse* derlenir #[cfg(not(target_os = "linux"))] fn are_you_on_linux() { println!("You are *not* running linux!"); } fn main() { are_you_on_linux(); println!("Are you sure?"); if cfg!(target_os = "linux") { println!("Yes. It's definitely linux!"); } else { println!("Yes. It's definitely *not* linux!"); } }
Ayrıca bakın:
İngilizce referans, cfg!
, ve macro'lar.
Özel
target_os
gibi bazı koşul ifadeleri dolaylı olarak rustc
tarafından sağlanır, ama özel koşul ifadeleri --cfg
bayrağı kullanılarak rustc
ye iletilmelidir.
#[cfg(birtakim_kosullar)] fn kosullu_fonksiyon() { println!("kosul karsilandi!"); } fn main() { kosullu_fonksiyon(); }
Bunu özel cfg
bayrağı olmadan çalıştırın ve bakın neler oluyor.
Özel cfg
bayrağıyla:
$ rustc --cfg birtakim_kosullar custom.rs && ./custom
kosul karsilandi!
Genelleyiciler
Generic'ler (Genelleyiciler) tipleri ve fonksiyonları daha geniş durumlara genelleme konusudur. Bu, birçok yönden kod yinelemesini azaltmak için oldukça kullanışlıdır, ancak daha çok söz dizimi(syntax) kullanımı gerektirebilir. Yani, generic olmak; genel bir tipin hangi tipler üzerinde geçerli kabul edildiğini belirtmek için büyük özen gerektirir. Generic'lerin en basit ve en yaygın kullanımı tip parametreleri içindir.
Bir tip parametresi, açılı ayraçlar ve büyük harfli
camel case kullanılarak belirtilir: <Aaa, Bbb, ...>
. "Generic tip parametreleri" genellikle şu şekilde temsil edilir: <T>
. Rust'ta "generic", bir veya daha fazla generic tip parametresini <T>
kabul eden her şeyi tanımlar. Generic bir tip parametresi olarak belirtilen herhangi bir tip generic yani geneldir ve diğer her şey somuttur(generic olmayan).
Örneğin, herhangi bir tipten bağımsız foo
isimli T
bağımsız tipte argüman alan generic fonksiyon tanımlamak:
fn foo<T>(arg: T) { ... }
Çünkü T
<T>
kullanılarak genel bir tip parametresi olarak bildirildiğinden, burada (arg: T)
olarak kullanıldığında generic kabul edilir. T
daha önce struct
olarak tanımlanmış olsa bile geçerli olan budur.
Bu örnek bazı söz dizimlerini gösterir:
// Somut tip `A`. struct A; // `Single` tipini tanımlarken, `A`nın ilk kullanımından önce `<A>` gelmez. // Bu nedenle, `Single` bir somut tiptir, ve `A` yukarıdaki gibi tanımlanır. struct Single(A); // ^ `Single`ın `A` tipinin ilk kullanımı. // Burada, `<T>`, `T`nin ilk kullanımından önce gelir, bu sebeple `SingleGen` generic bir tiptir. // `T` tip parametresi generic olduğundan, herhangi bir şey olabilir; // tepede tanımalanan somut `A` tipi de. struct SingleGen<T>(T); fn main() { // `Single` somuttur ve açıkça `A` alır. let _s = Single(A); // Tipi `SingleGen<char>` olan `_char` değişken tanımlayın // ve `SingleGen('a')` değerini verin. // Burada, `SingleGen` açıkça belirtilmiş bir tip parametresine sahiptir. let _char: SingleGen<char> = SingleGen('a'); // `SingleGen` ayrıca dolaylı olarak belirtilen bir tip parametresine sahip olabilir: let _t = SingleGen(A); // Tepe tanımlanan `A`yı kullanır. let _i32 = SingleGen(6); // `i32`yi kullanır. let _char = SingleGen('a'); // `char`ı kullanır. }
Ayrıca Bakınız:
Functions
The same set of rules can be applied to functions: a type T
becomes
generic when preceded by <T>
.
Using generic functions sometimes requires explicitly specifying type parameters. This may be the case if the function is called where the return type is generic, or if the compiler doesn't have enough information to infer the necessary type parameters.
A function call with explicitly specified type parameters looks like:
fun::<A, B, ...>()
.
struct A; // Concrete type `A`. struct S(A); // Concrete type `S`. struct SGen<T>(T); // Generic type `SGen`. // The following functions all take ownership of the variable passed into // them and immediately go out of scope, freeing the variable. // Define a function `reg_fn` that takes an argument `_s` of type `S`. // This has no `<T>` so this is not a generic function. fn reg_fn(_s: S) {} // Define a function `gen_spec_t` that takes an argument `_s` of type `SGen<T>`. // It has been explicitly given the type parameter `A`, but because `A` has not // been specified as a generic type parameter for `gen_spec_t`, it is not generic. fn gen_spec_t(_s: SGen<A>) {} // Define a function `gen_spec_i32` that takes an argument `_s` of type `SGen<i32>`. // It has been explicitly given the type parameter `i32`, which is a specific type. // Because `i32` is not a generic type, this function is also not generic. fn gen_spec_i32(_s: SGen<i32>) {} // Define a function `generic` that takes an argument `_s` of type `SGen<T>`. // Because `SGen<T>` is preceded by `<T>`, this function is generic over `T`. fn generic<T>(_s: SGen<T>) {} fn main() { // Using the non-generic functions reg_fn(S(A)); // Concrete type. gen_spec_t(SGen(A)); // Implicitly specified type parameter `A`. gen_spec_i32(SGen(6)); // Implicitly specified type parameter `i32`. // Explicitly specified type parameter `char` to `generic()`. generic::<char>(SGen('a')); // Implicitly specified type parameter `char` to `generic()`. generic(SGen('c')); }
See also:
Implementation
Similar to functions, implementations require care to remain generic.
#![allow(unused)] fn main() { struct S; // Concrete type `S` struct GenericVal<T>(T); // Generic type `GenericVal` // impl of GenericVal where we explicitly specify type parameters: impl GenericVal<f32> {} // Specify `f32` impl GenericVal<S> {} // Specify `S` as defined above // `<T>` Must precede the type to remain generic impl<T> GenericVal<T> {} }
struct Val { val: f64, } struct GenVal<T> { gen_val: T, } // impl of Val impl Val { fn value(&self) -> &f64 { &self.val } } // impl of GenVal for a generic type `T` impl<T> GenVal<T> { fn value(&self) -> &T { &self.gen_val } } fn main() { let x = Val { val: 3.0 }; let y = GenVal { gen_val: 3i32 }; println!("{}, {}", x.value(), y.value()); }
See also:
functions returning references, impl
, and struct
Traits
Of course trait
s can also be generic. Here we define one which reimplements
the Drop
trait
as a generic method to drop
itself and an input.
// Non-copyable types. struct Empty; struct Null; // A trait generic over `T`. trait DoubleDrop<T> { // Define a method on the caller type which takes an // additional single parameter `T` and does nothing with it. fn double_drop(self, _: T); } // Implement `DoubleDrop<T>` for any generic parameter `T` and // caller `U`. impl<T, U> DoubleDrop<T> for U { // This method takes ownership of both passed arguments, // deallocating both. fn double_drop(self, _: T) {} } fn main() { let empty = Empty; let null = Null; // Deallocate `empty` and `null`. empty.double_drop(null); //empty; //null; // ^ TODO: Try uncommenting these lines. }
See also:
Bounds
When working with generics, the type parameters often must use traits as bounds to
stipulate what functionality a type implements. For example, the following
example uses the trait Display
to print and so it requires T
to be bound
by Display
; that is, T
must implement Display
.
// Define a function `printer` that takes a generic type `T` which
// must implement trait `Display`.
fn printer<T: Display>(t: T) {
println!("{}", t);
}
Bounding restricts the generic to types that conform to the bounds. That is:
struct S<T: Display>(T);
// Error! `Vec<T>` does not implement `Display`. This
// specialization will fail.
let s = S(vec![1]);
Another effect of bounding is that generic instances are allowed to access the methods of traits specified in the bounds. For example:
// A trait which implements the print marker: `{:?}`. use std::fmt::Debug; trait HasArea { fn area(&self) -> f64; } impl HasArea for Rectangle { fn area(&self) -> f64 { self.length * self.height } } #[derive(Debug)] struct Rectangle { length: f64, height: f64 } #[allow(dead_code)] struct Triangle { length: f64, height: f64 } // The generic `T` must implement `Debug`. Regardless // of the type, this will work properly. fn print_debug<T: Debug>(t: &T) { println!("{:?}", t); } // `T` must implement `HasArea`. Any type which meets // the bound can access `HasArea`'s function `area`. fn area<T: HasArea>(t: &T) -> f64 { t.area() } fn main() { let rectangle = Rectangle { length: 3.0, height: 4.0 }; let _triangle = Triangle { length: 3.0, height: 4.0 }; print_debug(&rectangle); println!("Area: {}", area(&rectangle)); //print_debug(&_triangle); //println!("Area: {}", area(&_triangle)); // ^ TODO: Try uncommenting these. // | Error: Does not implement either `Debug` or `HasArea`. }
As an additional note, where
clauses can also be used to apply bounds in
some cases to be more expressive.
See also:
Testcase: empty bounds
A consequence of how bounds work is that even if a trait
doesn't
include any functionality, you can still use it as a bound. Eq
and
Copy
are examples of such trait
s from the std
library.
struct Cardinal; struct BlueJay; struct Turkey; trait Red {} trait Blue {} impl Red for Cardinal {} impl Blue for BlueJay {} // These functions are only valid for types which implement these // traits. The fact that the traits are empty is irrelevant. fn red<T: Red>(_: &T) -> &'static str { "red" } fn blue<T: Blue>(_: &T) -> &'static str { "blue" } fn main() { let cardinal = Cardinal; let blue_jay = BlueJay; let _turkey = Turkey; // `red()` won't work on a blue jay nor vice versa // because of the bounds. println!("A cardinal is {}", red(&cardinal)); println!("A blue jay is {}", blue(&blue_jay)); //println!("A turkey is {}", red(&_turkey)); // ^ TODO: Try uncommenting this line. }
See also:
std::cmp::Eq
, std::marker::Copy
, and trait
s
Multiple bounds
Multiple bounds can be applied with a +
. Like normal, different types are
separated with ,
.
use std::fmt::{Debug, Display}; fn compare_prints<T: Debug + Display>(t: &T) { println!("Debug: `{:?}`", t); println!("Display: `{}`", t); } fn compare_types<T: Debug, U: Debug>(t: &T, u: &U) { println!("t: `{:?}`", t); println!("u: `{:?}`", u); } fn main() { let string = "words"; let array = [1, 2, 3]; let vec = vec![1, 2, 3]; compare_prints(&string); //compare_prints(&array); // TODO ^ Try uncommenting this. compare_types(&array, &vec); }
See also:
Where clauses
A bound can also be expressed using a where
clause immediately
before the opening {
, rather than at the type's first mention.
Additionally, where
clauses can apply bounds to arbitrary types,
rather than just to type parameters.
Some cases that a where
clause is useful:
- When specifying generic types and bounds separately is clearer:
impl <A: TraitB + TraitC, D: TraitE + TraitF> MyTrait<A, D> for YourType {}
// Expressing bounds with a `where` clause
impl <A, D> MyTrait<A, D> for YourType where
A: TraitB + TraitC,
D: TraitE + TraitF {}
- When using a
where
clause is more expressive than using normal syntax. Theimpl
in this example cannot be directly expressed without awhere
clause:
use std::fmt::Debug; trait PrintInOption { fn print_in_option(self); } // Because we would otherwise have to express this as `T: Debug` or // use another method of indirect approach, this requires a `where` clause: impl<T> PrintInOption for T where Option<T>: Debug { // We want `Option<T>: Debug` as our bound because that is what's // being printed. Doing otherwise would be using the wrong bound. fn print_in_option(self) { println!("{:?}", Some(self)); } } fn main() { let vec = vec![1, 2, 3]; vec.print_in_option(); }
See also:
New Type Idiom
The newtype
idiom gives compile time guarantees that the right type of value is supplied
to a program.
For example, an age verification function that checks age in years, must be given
a value of type Years
.
struct Years(i64); struct Days(i64); impl Years { pub fn to_days(&self) -> Days { Days(self.0 * 365) } } impl Days { /// truncates partial years pub fn to_years(&self) -> Years { Years(self.0 / 365) } } fn old_enough(age: &Years) -> bool { age.0 >= 18 } fn main() { let age = Years(5); let age_days = age.to_days(); println!("Old enough {}", old_enough(&age)); println!("Old enough {}", old_enough(&age_days.to_years())); // println!("Old enough {}", old_enough(&age_days)); }
Uncomment the last print statement to observe that the type supplied must be Years
.
To obtain the newtype
's value as the base type, you may use tuple syntax like so:
struct Years(i64); fn main() { let years = Years(42); let years_as_primitive: i64 = years.0; }
See also:
Associated items
"Associated Items" refers to a set of rules pertaining to item
s
of various types. It is an extension to trait
generics, and allows
trait
s to internally define new items.
One such item is called an associated type, providing simpler usage
patterns when the trait
is generic over its container type.
See also:
The Problem
A trait
that is generic over its container type has type specification
requirements - users of the trait
must specify all of its generic types.
In the example below, the Contains
trait
allows the use of the generic
types A
and B
. The trait is then implemented for the Container
type,
specifying i32
for A
and B
so that it can be used with fn difference()
.
Because Contains
is generic, we are forced to explicitly state all of the
generic types for fn difference()
. In practice, we want a way to express that
A
and B
are determined by the input C
. As you will see in the next
section, associated types provide exactly that capability.
struct Container(i32, i32); // A trait which checks if 2 items are stored inside of container. // Also retrieves first or last value. trait Contains<A, B> { fn contains(&self, _: &A, _: &B) -> bool; // Explicitly requires `A` and `B`. fn first(&self) -> i32; // Doesn't explicitly require `A` or `B`. fn last(&self) -> i32; // Doesn't explicitly require `A` or `B`. } impl Contains<i32, i32> for Container { // True if the numbers stored are equal. fn contains(&self, number_1: &i32, number_2: &i32) -> bool { (&self.0 == number_1) && (&self.1 == number_2) } // Grab the first number. fn first(&self) -> i32 { self.0 } // Grab the last number. fn last(&self) -> i32 { self.1 } } // `C` contains `A` and `B`. In light of that, having to express `A` and // `B` again is a nuisance. fn difference<A, B, C>(container: &C) -> i32 where C: Contains<A, B> { container.last() - container.first() } fn main() { let number_1 = 3; let number_2 = 10; let container = Container(number_1, number_2); println!("Does container contain {} and {}: {}", &number_1, &number_2, container.contains(&number_1, &number_2)); println!("First number: {}", container.first()); println!("Last number: {}", container.last()); println!("The difference is: {}", difference(&container)); }
See also:
Associated types
The use of "Associated types" improves the overall readability of code
by moving inner types locally into a trait as output types. Syntax
for the trait
definition is as follows:
#![allow(unused)] fn main() { // `A` and `B` are defined in the trait via the `type` keyword. // (Note: `type` in this context is different from `type` when used for // aliases). trait Contains { type A; type B; // Updated syntax to refer to these new types generically. fn contains(&self, &Self::A, &Self::B) -> bool; } }
Note that functions that use the trait
Contains
are no longer required
to express A
or B
at all:
// Without using associated types
fn difference<A, B, C>(container: &C) -> i32 where
C: Contains<A, B> { ... }
// Using associated types
fn difference<C: Contains>(container: &C) -> i32 { ... }
Let's rewrite the example from the previous section using associated types:
struct Container(i32, i32); // A trait which checks if 2 items are stored inside of container. // Also retrieves first or last value. trait Contains { // Define generic types here which methods will be able to utilize. type A; type B; fn contains(&self, _: &Self::A, _: &Self::B) -> bool; fn first(&self) -> i32; fn last(&self) -> i32; } impl Contains for Container { // Specify what types `A` and `B` are. If the `input` type // is `Container(i32, i32)`, the `output` types are determined // as `i32` and `i32`. type A = i32; type B = i32; // `&Self::A` and `&Self::B` are also valid here. fn contains(&self, number_1: &i32, number_2: &i32) -> bool { (&self.0 == number_1) && (&self.1 == number_2) } // Grab the first number. fn first(&self) -> i32 { self.0 } // Grab the last number. fn last(&self) -> i32 { self.1 } } fn difference<C: Contains>(container: &C) -> i32 { container.last() - container.first() } fn main() { let number_1 = 3; let number_2 = 10; let container = Container(number_1, number_2); println!("Does container contain {} and {}: {}", &number_1, &number_2, container.contains(&number_1, &number_2)); println!("First number: {}", container.first()); println!("Last number: {}", container.last()); println!("The difference is: {}", difference(&container)); }
Phantom type parameters
A phantom type parameter is one that doesn't show up at runtime, but is checked statically (and only) at compile time.
Data types can use extra generic type parameters to act as markers or to perform type checking at compile time. These extra parameters hold no storage values, and have no runtime behavior.
In the following example, we combine std::marker::PhantomData with the phantom type parameter concept to create tuples containing different data types.
use std::marker::PhantomData; // A phantom tuple struct which is generic over `A` with hidden parameter `B`. #[derive(PartialEq)] // Allow equality test for this type. struct PhantomTuple<A, B>(A,PhantomData<B>); // A phantom type struct which is generic over `A` with hidden parameter `B`. #[derive(PartialEq)] // Allow equality test for this type. struct PhantomStruct<A, B> { first: A, phantom: PhantomData<B> } // Note: Storage is allocated for generic type `A`, but not for `B`. // Therefore, `B` cannot be used in computations. fn main() { // Here, `f32` and `f64` are the hidden parameters. // PhantomTuple type specified as `<char, f32>`. let _tuple1: PhantomTuple<char, f32> = PhantomTuple('Q', PhantomData); // PhantomTuple type specified as `<char, f64>`. let _tuple2: PhantomTuple<char, f64> = PhantomTuple('Q', PhantomData); // Type specified as `<char, f32>`. let _struct1: PhantomStruct<char, f32> = PhantomStruct { first: 'Q', phantom: PhantomData, }; // Type specified as `<char, f64>`. let _struct2: PhantomStruct<char, f64> = PhantomStruct { first: 'Q', phantom: PhantomData, }; // Compile-time Error! Type mismatch so these cannot be compared: //println!("_tuple1 == _tuple2 yields: {}", // _tuple1 == _tuple2); // Compile-time Error! Type mismatch so these cannot be compared: //println!("_struct1 == _struct2 yields: {}", // _struct1 == _struct2); }
See also:
Derive, struct, and TupleStructs
Testcase: unit clarification
A useful method of unit conversions can be examined by implementing Add
with a phantom type parameter. The Add
trait
is examined below:
// This construction would impose: `Self + RHS = Output`
// where RHS defaults to Self if not specified in the implementation.
pub trait Add<RHS = Self> {
type Output;
fn add(self, rhs: RHS) -> Self::Output;
}
// `Output` must be `T<U>` so that `T<U> + T<U> = T<U>`.
impl<U> Add for T<U> {
type Output = T<U>;
...
}
The whole implementation:
use std::ops::Add; use std::marker::PhantomData; /// Create void enumerations to define unit types. #[derive(Debug, Clone, Copy)] enum Inch {} #[derive(Debug, Clone, Copy)] enum Mm {} /// `Length` is a type with phantom type parameter `Unit`, /// and is not generic over the length type (that is `f64`). /// /// `f64` already implements the `Clone` and `Copy` traits. #[derive(Debug, Clone, Copy)] struct Length<Unit>(f64, PhantomData<Unit>); /// The `Add` trait defines the behavior of the `+` operator. impl<Unit> Add for Length<Unit> { type Output = Length<Unit>; // add() returns a new `Length` struct containing the sum. fn add(self, rhs: Length<Unit>) -> Length<Unit> { // `+` calls the `Add` implementation for `f64`. Length(self.0 + rhs.0, PhantomData) } } fn main() { // Specifies `one_foot` to have phantom type parameter `Inch`. let one_foot: Length<Inch> = Length(12.0, PhantomData); // `one_meter` has phantom type parameter `Mm`. let one_meter: Length<Mm> = Length(1000.0, PhantomData); // `+` calls the `add()` method we implemented for `Length<Unit>`. // // Since `Length` implements `Copy`, `add()` does not consume // `one_foot` and `one_meter` but copies them into `self` and `rhs`. let two_feet = one_foot + one_foot; let two_meters = one_meter + one_meter; // Addition works. println!("one foot + one_foot = {:?} in", two_feet.0); println!("one meter + one_meter = {:?} mm", two_meters.0); // Nonsensical operations fail as they should: // Compile-time Error: type mismatch. //let one_feter = one_foot + one_meter; }
See also:
Borrowing (&
), Bounds (X: Y
), enum, impl & self,
Overloading, ref, Traits (X for Y
), and TupleStructs.
Kapsam Kuralları
Kapsamlar, sahiplik(ownership) ödünç alma(borrowing) ve yaşam süreleri(lifetime) gibi durumlarda önemli bir yer tutar. Ödünç alanların ne zaman geçerli olduğunu, kaynakların ne zaman serbest bırakılabileceğini ve değişkenlerin ne zaman oluşturulduğu veya yok edildiğini derleyiciye gösterirler.
RAII
Variables in Rust do more than just hold data in the stack: they also own
resources, e.g. Box<T>
owns memory in the heap. Rust enforces RAII
(Resource Acquisition Is Initialization), so whenever an object goes out of
scope, its destructor is called and its owned resources are freed.
This behavior shields against resource leak bugs, so you'll never have to manually free memory or worry about memory leaks again! Here's a quick showcase:
// raii.rs fn create_box() { // Allocate an integer on the heap let _box1 = Box::new(3i32); // `_box1` is destroyed here, and memory gets freed } fn main() { // Allocate an integer on the heap let _box2 = Box::new(5i32); // A nested scope: { // Allocate an integer on the heap let _box3 = Box::new(4i32); // `_box3` is destroyed here, and memory gets freed } // Creating lots of boxes just for fun // There's no need to manually free memory! for _ in 0u32..1_000 { create_box(); } // `_box2` is destroyed here, and memory gets freed }
Of course, we can double check for memory errors using valgrind
:
$ rustc raii.rs && valgrind ./raii
==26873== Memcheck, a memory error detector
==26873== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==26873== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info
==26873== Command: ./raii
==26873==
==26873==
==26873== HEAP SUMMARY:
==26873== in use at exit: 0 bytes in 0 blocks
==26873== total heap usage: 1,013 allocs, 1,013 frees, 8,696 bytes allocated
==26873==
==26873== All heap blocks were freed -- no leaks are possible
==26873==
==26873== For counts of detected and suppressed errors, rerun with: -v
==26873== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2 from 2)
No leaks here!
Destructor
The notion of a destructor in Rust is provided through the Drop
trait. The
destructor is called when the resource goes out of scope. This trait is not
required to be implemented for every type, only implement it for your type if
you require its own destructor logic.
Run the below example to see how the Drop
trait works. When the variable in
the main
function goes out of scope the custom destructor will be invoked.
struct ToDrop; impl Drop for ToDrop { fn drop(&mut self) { println!("ToDrop is being dropped"); } } fn main() { let x = ToDrop; println!("Made a ToDrop!"); }
See also:
Ownership and moves
Because variables are in charge of freeing their own resources, resources can only have one owner. This also prevents resources from being freed more than once. Note that not all variables own resources (e.g. references).
When doing assignments (let x = y
) or passing function arguments by value
(foo(x)
), the ownership of the resources is transferred. In Rust-speak,
this is known as a move.
After moving resources, the previous owner can no longer be used. This avoids creating dangling pointers.
// This function takes ownership of the heap allocated memory fn destroy_box(c: Box<i32>) { println!("Destroying a box that contains {}", c); // `c` is destroyed and the memory freed } fn main() { // _Stack_ allocated integer let x = 5u32; // *Copy* `x` into `y` - no resources are moved let y = x; // Both values can be independently used println!("x is {}, and y is {}", x, y); // `a` is a pointer to a _heap_ allocated integer let a = Box::new(5i32); println!("a contains: {}", a); // *Move* `a` into `b` let b = a; // The pointer address of `a` is copied (not the data) into `b`. // Both are now pointers to the same heap allocated data, but // `b` now owns it. // Error! `a` can no longer access the data, because it no longer owns the // heap memory //println!("a contains: {}", a); // TODO ^ Try uncommenting this line // This function takes ownership of the heap allocated memory from `b` destroy_box(b); // Since the heap memory has been freed at this point, this action would // result in dereferencing freed memory, but it's forbidden by the compiler // Error! Same reason as the previous Error //println!("b contains: {}", b); // TODO ^ Try uncommenting this line }
Mutability
Mutability of data can be changed when ownership is transferred.
fn main() { let immutable_box = Box::new(5u32); println!("immutable_box contains {}", immutable_box); // Mutability error //*immutable_box = 4; // *Move* the box, changing the ownership (and mutability) let mut mutable_box = immutable_box; println!("mutable_box contains {}", mutable_box); // Modify the contents of the box *mutable_box = 4; println!("mutable_box now contains {}", mutable_box); }
Partial moves
Pattern bindings can have by-move
and by-reference
bindings at
the same time which is used in destructuring. Using these pattern
will result in partial move for the variable, which means that part
of the variable is moved while other parts stayed. In this case, the
parent variable cannot be used afterwards as a whole. However, parts
of it that are referenced and not moved can be used.
fn main() { #[derive(Debug)] struct Person { name: String, age: u8, } let person = Person { name: String::from("Alice"), age: 20, }; // `name` is moved out of person, but `age` is referenced let Person { name, ref age } = person; println!("The person's age is {}", age); println!("The person's name is {}", name); // Error! borrow of partially moved value: `person` partial move occurs //println!("The person struct is {:?}", person); // `person` cannot be used but `person.age` can be used as it is not moved println!("The person's age from person struct is {}", person.age); }
See also:
Borrowing
Most of the time, we'd like to access data without taking ownership over
it. To accomplish this, Rust uses a borrowing mechanism. Instead of
passing objects by value (T
), objects can be passed by reference (&T
).
The compiler statically guarantees (via its borrow checker) that references always point to valid objects. That is, while references to an object exist, the object cannot be destroyed.
// This function takes ownership of a box and destroys it fn eat_box_i32(boxed_i32: Box<i32>) { println!("Destroying box that contains {}", boxed_i32); } // This function borrows an i32 fn borrow_i32(borrowed_i32: &i32) { println!("This int is: {}", borrowed_i32); } fn main() { // Create a boxed i32, and a stacked i32 let boxed_i32 = Box::new(5_i32); let stacked_i32 = 6_i32; // Borrow the contents of the box. Ownership is not taken, // so the contents can be borrowed again. borrow_i32(&boxed_i32); borrow_i32(&stacked_i32); { // Take a reference to the data contained inside the box let _ref_to_i32: &i32 = &boxed_i32; // Error! // Can't destroy `boxed_i32` while the inner value is borrowed later in scope. eat_box_i32(boxed_i32); // FIXME ^ Comment out this line // Attempt to borrow `_ref_to_i32` after inner value is destroyed borrow_i32(_ref_to_i32); // `_ref_to_i32` goes out of scope and is no longer borrowed. } // `boxed_i32` can now give up ownership to `eat_box` and be destroyed eat_box_i32(boxed_i32); }
Mutability
Mutable data can be mutably borrowed using &mut T
. This is called
a mutable reference and gives read/write access to the borrower.
In contrast, &T
borrows the data via an immutable reference, and
the borrower can read the data but not modify it:
#[allow(dead_code)] #[derive(Clone, Copy)] struct Book { // `&'static str` is a reference to a string allocated in read only memory author: &'static str, title: &'static str, year: u32, } // This function takes a reference to a book fn borrow_book(book: &Book) { println!("I immutably borrowed {} - {} edition", book.title, book.year); } // This function takes a reference to a mutable book and changes `year` to 2014 fn new_edition(book: &mut Book) { book.year = 2014; println!("I mutably borrowed {} - {} edition", book.title, book.year); } fn main() { // Create an immutable Book named `immutabook` let immutabook = Book { // string literals have type `&'static str` author: "Douglas Hofstadter", title: "Gödel, Escher, Bach", year: 1979, }; // Create a mutable copy of `immutabook` and call it `mutabook` let mut mutabook = immutabook; // Immutably borrow an immutable object borrow_book(&immutabook); // Immutably borrow a mutable object borrow_book(&mutabook); // Borrow a mutable object as mutable new_edition(&mut mutabook); // Error! Cannot borrow an immutable object as mutable new_edition(&mut immutabook); // FIXME ^ Comment out this line }
See also:
Aliasing
Data can be immutably borrowed any number of times, but while immutably borrowed, the original data can't be mutably borrowed. On the other hand, only one mutable borrow is allowed at a time. The original data can be borrowed again only after the mutable reference has been used for the last time.
struct Point { x: i32, y: i32, z: i32 } fn main() { let mut point = Point { x: 0, y: 0, z: 0 }; let borrowed_point = &point; let another_borrow = &point; // Data can be accessed via the references and the original owner println!("Point has coordinates: ({}, {}, {})", borrowed_point.x, another_borrow.y, point.z); // Error! Can't borrow `point` as mutable because it's currently // borrowed as immutable. // let mutable_borrow = &mut point; // TODO ^ Try uncommenting this line // The borrowed values are used again here println!("Point has coordinates: ({}, {}, {})", borrowed_point.x, another_borrow.y, point.z); // The immutable references are no longer used for the rest of the code so // it is possible to reborrow with a mutable reference. let mutable_borrow = &mut point; // Change data via mutable reference mutable_borrow.x = 5; mutable_borrow.y = 2; mutable_borrow.z = 1; // Error! Can't borrow `point` as immutable because it's currently // borrowed as mutable. // let y = &point.y; // TODO ^ Try uncommenting this line // Error! Can't print because `println!` takes an immutable reference. // println!("Point Z coordinate is {}", point.z); // TODO ^ Try uncommenting this line // Ok! Mutable references can be passed as immutable to `println!` println!("Point has coordinates: ({}, {}, {})", mutable_borrow.x, mutable_borrow.y, mutable_borrow.z); // The mutable reference is no longer used for the rest of the code so it // is possible to reborrow let new_borrowed_point = &point; println!("Point now has coordinates: ({}, {}, {})", new_borrowed_point.x, new_borrowed_point.y, new_borrowed_point.z); }
The ref pattern
When doing pattern matching or destructuring via the let
binding, the ref
keyword can be used to take references to the fields of a struct/tuple. The
example below shows a few instances where this can be useful:
#[derive(Clone, Copy)] struct Point { x: i32, y: i32 } fn main() { let c = 'Q'; // A `ref` borrow on the left side of an assignment is equivalent to // an `&` borrow on the right side. let ref ref_c1 = c; let ref_c2 = &c; println!("ref_c1 equals ref_c2: {}", *ref_c1 == *ref_c2); let point = Point { x: 0, y: 0 }; // `ref` is also valid when destructuring a struct. let _copy_of_x = { // `ref_to_x` is a reference to the `x` field of `point`. let Point { x: ref ref_to_x, y: _ } = point; // Return a copy of the `x` field of `point`. *ref_to_x }; // A mutable copy of `point` let mut mutable_point = point; { // `ref` can be paired with `mut` to take mutable references. let Point { x: _, y: ref mut mut_ref_to_y } = mutable_point; // Mutate the `y` field of `mutable_point` via a mutable reference. *mut_ref_to_y = 1; } println!("point is ({}, {})", point.x, point.y); println!("mutable_point is ({}, {})", mutable_point.x, mutable_point.y); // A mutable tuple that includes a pointer let mut mutable_tuple = (Box::new(5u32), 3u32); { // Destructure `mutable_tuple` to change the value of `last`. let (_, ref mut last) = mutable_tuple; *last = 2u32; } println!("tuple is {:?}", mutable_tuple); }
Lifetimes
A lifetime is a construct the compiler (or more specifically, its borrow checker) uses to ensure all borrows are valid. Specifically, a variable's lifetime begins when it is created and ends when it is destroyed. While lifetimes and scopes are often referred to together, they are not the same.
Take, for example, the case where we borrow a variable via &
. The
borrow has a lifetime that is determined by where it is declared. As a result,
the borrow is valid as long as it ends before the lender is destroyed. However,
the scope of the borrow is determined by where the reference is used.
In the following example and in the rest of this section, we will see how lifetimes relate to scopes, as well as how the two differ.
// Lifetimes are annotated below with lines denoting the creation // and destruction of each variable. // `i` has the longest lifetime because its scope entirely encloses // both `borrow1` and `borrow2`. The duration of `borrow1` compared // to `borrow2` is irrelevant since they are disjoint. fn main() { let i = 3; // Lifetime for `i` starts. ────────────────┐ // │ { // │ let borrow1 = &i; // `borrow1` lifetime starts. ──┐│ // ││ println!("borrow1: {}", borrow1); // ││ } // `borrow1 ends. ──────────────────────────────────┘│ // │ // │ { // │ let borrow2 = &i; // `borrow2` lifetime starts. ──┐│ // ││ println!("borrow2: {}", borrow2); // ││ } // `borrow2` ends. ─────────────────────────────────┘│ // │ } // Lifetime ends. ─────────────────────────────────────┘
Note that no names or types are assigned to label lifetimes. This restricts how lifetimes will be able to be used as we will see.
Explicit annotation
The borrow checker uses explicit lifetime annotations to determine how long references should be valid. In cases where lifetimes are not elided1, Rust requires explicit annotations to determine what the lifetime of a reference should be. The syntax for explicitly annotating a lifetime uses an apostrophe character as follows:
foo<'a>
// `foo` has a lifetime parameter `'a`
Similar to closures, using lifetimes requires generics.
Additionally, this lifetime syntax indicates that the lifetime of foo
may not exceed that of 'a
. Explicit annotation of a type has the form
&'a T
where 'a
has already been introduced.
In cases with multiple lifetimes, the syntax is similar:
foo<'a, 'b>
// `foo` has lifetime parameters `'a` and `'b`
In this case, the lifetime of foo
cannot exceed that of either 'a
or 'b
.
See the following example for explicit lifetime annotation in use:
// `print_refs` takes two references to `i32` which have different // lifetimes `'a` and `'b`. These two lifetimes must both be at // least as long as the function `print_refs`. fn print_refs<'a, 'b>(x: &'a i32, y: &'b i32) { println!("x is {} and y is {}", x, y); } // A function which takes no arguments, but has a lifetime parameter `'a`. fn failed_borrow<'a>() { let _x = 12; // ERROR: `_x` does not live long enough //let y: &'a i32 = &_x; // Attempting to use the lifetime `'a` as an explicit type annotation // inside the function will fail because the lifetime of `&_x` is shorter // than that of `y`. A short lifetime cannot be coerced into a longer one. } fn main() { // Create variables to be borrowed below. let (four, nine) = (4, 9); // Borrows (`&`) of both variables are passed into the function. print_refs(&four, &nine); // Any input which is borrowed must outlive the borrower. // In other words, the lifetime of `four` and `nine` must // be longer than that of `print_refs`. failed_borrow(); // `failed_borrow` contains no references to force `'a` to be // longer than the lifetime of the function, but `'a` is longer. // Because the lifetime is never constrained, it defaults to `'static`. }
elision implicitly annotates lifetimes and so is different.
See also:
Functions
Ignoring elision, function signatures with lifetimes have a few constraints:
- any reference must have an annotated lifetime.
- any reference being returned must have the same lifetime as an input or
be
static
.
Additionally, note that returning references without input is banned if it would result in returning references to invalid data. The following example shows off some valid forms of functions with lifetimes:
// One input reference with lifetime `'a` which must live // at least as long as the function. fn print_one<'a>(x: &'a i32) { println!("`print_one`: x is {}", x); } // Mutable references are possible with lifetimes as well. fn add_one<'a>(x: &'a mut i32) { *x += 1; } // Multiple elements with different lifetimes. In this case, it // would be fine for both to have the same lifetime `'a`, but // in more complex cases, different lifetimes may be required. fn print_multi<'a, 'b>(x: &'a i32, y: &'b i32) { println!("`print_multi`: x is {}, y is {}", x, y); } // Returning references that have been passed in is acceptable. // However, the correct lifetime must be returned. fn pass_x<'a, 'b>(x: &'a i32, _: &'b i32) -> &'a i32 { x } //fn invalid_output<'a>() -> &'a String { &String::from("foo") } // The above is invalid: `'a` must live longer than the function. // Here, `&String::from("foo")` would create a `String`, followed by a // reference. Then the data is dropped upon exiting the scope, leaving // a reference to invalid data to be returned. fn main() { let x = 7; let y = 9; print_one(&x); print_multi(&x, &y); let z = pass_x(&x, &y); print_one(z); let mut t = 3; add_one(&mut t); print_one(&t); }
See also:
Methods
Methods are annotated similarly to functions:
struct Owner(i32); impl Owner { // Annotate lifetimes as in a standalone function. fn add_one<'a>(&'a mut self) { self.0 += 1; } fn print<'a>(&'a self) { println!("`print`: {}", self.0); } } fn main() { let mut owner = Owner(18); owner.add_one(); owner.print(); }
See also:
Structs
Annotation of lifetimes in structures are also similar to functions:
// A type `Borrowed` which houses a reference to an // `i32`. The reference to `i32` must outlive `Borrowed`. #[derive(Debug)] struct Borrowed<'a>(&'a i32); // Similarly, both references here must outlive this structure. #[derive(Debug)] struct NamedBorrowed<'a> { x: &'a i32, y: &'a i32, } // An enum which is either an `i32` or a reference to one. #[derive(Debug)] enum Either<'a> { Num(i32), Ref(&'a i32), } fn main() { let x = 18; let y = 15; let single = Borrowed(&x); let double = NamedBorrowed { x: &x, y: &y }; let reference = Either::Ref(&x); let number = Either::Num(y); println!("x is borrowed in {:?}", single); println!("x and y are borrowed in {:?}", double); println!("x is borrowed in {:?}", reference); println!("y is *not* borrowed in {:?}", number); }
See also:
Traits
Annotation of lifetimes in trait methods basically are similar to functions.
Note that impl
may have annotation of lifetimes too.
// A struct with annotation of lifetimes. #[derive(Debug)] struct Borrowed<'a> { x: &'a i32, } // Annotate lifetimes to impl. impl<'a> Default for Borrowed<'a> { fn default() -> Self { Self { x: &10, } } } fn main() { let b: Borrowed = Default::default(); println!("b is {:?}", b); }
See also:
Bounds
Just like generic types can be bounded, lifetimes (themselves generic)
use bounds as well. The :
character has a slightly different meaning here,
but +
is the same. Note how the following read:
T: 'a
: All references inT
must outlive lifetime'a
.T: Trait + 'a
: TypeT
must implement traitTrait
and all references inT
must outlive'a
.
The example below shows the above syntax in action used after keyword where
:
use std::fmt::Debug; // Trait to bound with. #[derive(Debug)] struct Ref<'a, T: 'a>(&'a T); // `Ref` contains a reference to a generic type `T` that has // an unknown lifetime `'a`. `T` is bounded such that any // *references* in `T` must outlive `'a`. Additionally, the lifetime // of `Ref` may not exceed `'a`. // A generic function which prints using the `Debug` trait. fn print<T>(t: T) where T: Debug { println!("`print`: t is {:?}", t); } // Here a reference to `T` is taken where `T` implements // `Debug` and all *references* in `T` outlive `'a`. In // addition, `'a` must outlive the function. fn print_ref<'a, T>(t: &'a T) where T: Debug + 'a { println!("`print_ref`: t is {:?}", t); } fn main() { let x = 7; let ref_x = Ref(&x); print_ref(&ref_x); print(ref_x); }
See also:
generics, bounds in generics, and multiple bounds in generics
Coercion
A longer lifetime can be coerced into a shorter one so that it works inside a scope it normally wouldn't work in. This comes in the form of inferred coercion by the Rust compiler, and also in the form of declaring a lifetime difference:
// Here, Rust infers a lifetime that is as short as possible. // The two references are then coerced to that lifetime. fn multiply<'a>(first: &'a i32, second: &'a i32) -> i32 { first * second } // `<'a: 'b, 'b>` reads as lifetime `'a` is at least as long as `'b`. // Here, we take in an `&'a i32` and return a `&'b i32` as a result of coercion. fn choose_first<'a: 'b, 'b>(first: &'a i32, _: &'b i32) -> &'b i32 { first } fn main() { let first = 2; // Longer lifetime { let second = 3; // Shorter lifetime println!("The product is {}", multiply(&first, &second)); println!("{} is the first", choose_first(&first, &second)); }; }
Static
Rust has a few reserved lifetime names. One of those is 'static
. You
might encounter it in two situations:
// A reference with 'static lifetime: let s: &'static str = "hello world"; // 'static as part of a trait bound: fn generic<T>(x: T) where T: 'static {}
Both are related but subtly different and this is a common source for confusion when learning Rust. Here are some examples for each situation:
Reference lifetime
As a reference lifetime 'static
indicates that the data pointed to by
the reference lives for the entire lifetime of the running program.
It can still be coerced to a shorter lifetime.
There are two ways to make a variable with 'static
lifetime, and both
are stored in the read-only memory of the binary:
- Make a constant with the
static
declaration. - Make a
string
literal which has type:&'static str
.
See the following example for a display of each method:
// Make a constant with `'static` lifetime. static NUM: i32 = 18; // Returns a reference to `NUM` where its `'static` // lifetime is coerced to that of the input argument. fn coerce_static<'a>(_: &'a i32) -> &'a i32 { &NUM } fn main() { { // Make a `string` literal and print it: let static_string = "I'm in read-only memory"; println!("static_string: {}", static_string); // When `static_string` goes out of scope, the reference // can no longer be used, but the data remains in the binary. } { // Make an integer to use for `coerce_static`: let lifetime_num = 9; // Coerce `NUM` to lifetime of `lifetime_num`: let coerced_static = coerce_static(&lifetime_num); println!("coerced_static: {}", coerced_static); } println!("NUM: {} stays accessible!", NUM); }
Trait bound
As a trait bound, it means the type does not contain any non-static references. Eg. the receiver can hold on to the type for as long as they want and it will never become invalid until they drop it.
It's important to understand this means that any owned data always passes
a 'static
lifetime bound, but a reference to that owned data generally
does not:
use std::fmt::Debug; fn print_it( input: impl Debug + 'static ) { println!( "'static value passed in is: {:?}", input ); } fn main() { // i is owned and contains no references, thus it's 'static: let i = 5; print_it(i); // oops, &i only has the lifetime defined by the scope of // use_it(), so it's not 'static: print_it(&i); }
The compiler will tell you:
error[E0597]: `i` does not live long enough
--> src/lib.rs:15:15
|
15 | print_it(&i);
| ---------^^--
| | |
| | borrowed value does not live long enough
| argument requires that `i` is borrowed for `'static`
16 | }
| - `i` dropped here while still borrowed
See also:
Elision
Some lifetime patterns are overwhelmingly common and so the borrow checker will allow you to omit them to save typing and to improve readability. This is known as elision. Elision exists in Rust solely because these patterns are common.
The following code shows a few examples of elision. For a more comprehensive description of elision, see lifetime elision in the book.
// `elided_input` and `annotated_input` essentially have identical signatures // because the lifetime of `elided_input` is inferred by the compiler: fn elided_input(x: &i32) { println!("`elided_input`: {}", x); } fn annotated_input<'a>(x: &'a i32) { println!("`annotated_input`: {}", x); } // Similarly, `elided_pass` and `annotated_pass` have identical signatures // because the lifetime is added implicitly to `elided_pass`: fn elided_pass(x: &i32) -> &i32 { x } fn annotated_pass<'a>(x: &'a i32) -> &'a i32 { x } fn main() { let x = 3; elided_input(&x); annotated_input(&x); println!("`elided_pass`: {}", elided_pass(&x)); println!("`annotated_pass`: {}", annotated_pass(&x)); }
See also:
Nitelik
Nitelik yani trait
bilinmeyen bir tip için tanımlanan metotlar koleksiyonudur:
Self
(Kendi). Aynı nitelikte bildirilen diğer metotlara erişebilirler.
Nitelikler herhangi bir veri tipi için uygulanabilirler. Aşağıdaki örnekte,
bir metot grubu olan Animal
ı tanımlıyoruz. Animal
trait
(nitelik)i daha sonra
Sheep
veri tipi için uygulanarak Animal
ve Sheep
ten metotların kullanılmasına izin verir.
struct Sheep { naked: bool, name: &'static str } trait Animal { // Static metot imzası; `Self` implemente edici ifade eder. fn new(name: &'static str) -> Self; // Örnek metot imzaları; bunlar bir string döndürecektir. fn name(&self) -> &'static str; fn noise(&self) -> &'static str; // Nitelikler, varsayılan metot tanımlamaları sağlayabilir. fn talk(&self) { println!("{} says {}", self.name(), self.noise()); } } impl Sheep { fn is_naked(&self) -> bool { self.naked } fn shear(&mut self) { if self.is_naked() { // İmplemente edici metotları, implemente edicinin nitelik metotlarını kullanabilir println!("{} is already naked...", self.name()); } else { println!("{} gets a haircut!", self.name); self.naked = true; } } } // `Animal` niteliğini `Sheep` için implemente edin. impl Animal for Sheep { // `Self`, implemente edici tipi: `Sheep`. fn new(name: &'static str) -> Sheep { Sheep { name: name, naked: false } } fn name(&self) -> &'static str { self.name } fn noise(&self) -> &'static str { if self.is_naked() { "baaaaah?" } else { "baaaaah!" } } // Varsayılan nitelik metotları geçersiz kılınabilir. fn talk(&self) { // Örneğin, biraz sessiz düşünme durağı ekleyebiliriz. println!("{} pauses briefly... {}", self.name, self.noise()); } } fn main() { // Bu durumda, tip açıklaması gereklidir. let mut dolly: Sheep = Animal::new("Dolly"); // YAPILACAK ^ Tip ek açıklamalarını kaldırmayı deneyin. dolly.talk(); dolly.shear(); dolly.talk(); }
Derive
The compiler is capable of providing basic implementations for some traits via
the #[derive]
attribute. These traits can still be
manually implemented if a more complex behavior is required.
The following is a list of derivable traits:
- Comparison traits:
Eq
,PartialEq
,Ord
,PartialOrd
. Clone
, to createT
from&T
via a copy.Copy
, to give a type 'copy semantics' instead of 'move semantics'.Hash
, to compute a hash from&T
.Default
, to create an empty instance of a data type.Debug
, to format a value using the{:?}
formatter.
// `Centimeters`, a tuple struct that can be compared #[derive(PartialEq, PartialOrd)] struct Centimeters(f64); // `Inches`, a tuple struct that can be printed #[derive(Debug)] struct Inches(i32); impl Inches { fn to_centimeters(&self) -> Centimeters { let &Inches(inches) = self; Centimeters(inches as f64 * 2.54) } } // `Seconds`, a tuple struct with no additional attributes struct Seconds(i32); fn main() { let _one_second = Seconds(1); // Error: `Seconds` can't be printed; it doesn't implement the `Debug` trait //println!("One second looks like: {:?}", _one_second); // TODO ^ Try uncommenting this line // Error: `Seconds` can't be compared; it doesn't implement the `PartialEq` trait //let _this_is_true = (_one_second == _one_second); // TODO ^ Try uncommenting this line let foot = Inches(12); println!("One foot equals {:?}", foot); let meter = Centimeters(100.0); let cmp = if foot.to_centimeters() < meter { "smaller" } else { "bigger" }; println!("One foot is {} than one meter.", cmp); }
See also:
Returning Traits with dyn
The Rust compiler needs to know how much space every function's return type requires. This means all your functions have to return a concrete type. Unlike other languages, if you have a trait like Animal
, you can't write a function that returns Animal
, because its different implementations will need different amounts of memory.
However, there's an easy workaround. Instead of returning a trait object directly, our functions return a Box
which contains some Animal
. A box
is just a reference to some memory in the heap. Because a reference has a statically-known size, and the compiler can guarantee it points to a heap-allocated Animal
, we can return a trait from our function!
Rust tries to be as explicit as possible whenever it allocates memory on the heap. So if your function returns a pointer-to-trait-on-heap in this way, you need to write the return type with the dyn
keyword, e.g. Box<dyn Animal>
.
struct Sheep {} struct Cow {} trait Animal { // Instance method signature fn noise(&self) -> &'static str; } // Implement the `Animal` trait for `Sheep`. impl Animal for Sheep { fn noise(&self) -> &'static str { "baaaaah!" } } // Implement the `Animal` trait for `Cow`. impl Animal for Cow { fn noise(&self) -> &'static str { "moooooo!" } } // Returns some struct that implements Animal, but we don't know which one at compile time. fn random_animal(random_number: f64) -> Box<dyn Animal> { if random_number < 0.5 { Box::new(Sheep {}) } else { Box::new(Cow {}) } } fn main() { let random_number = 0.234; let animal = random_animal(random_number); println!("You've randomly chosen an animal, and it says {}", animal.noise()); }
Operator Overloading
In Rust, many of the operators can be overloaded via traits. That is, some operators can
be used to accomplish different tasks based on their input arguments. This is possible
because operators are syntactic sugar for method calls. For example, the +
operator in
a + b
calls the add
method (as in a.add(b)
). This add
method is part of the Add
trait. Hence, the +
operator can be used by any implementor of the Add
trait.
A list of the traits, such as Add
, that overload operators can be found in core::ops
.
use std::ops; struct Foo; struct Bar; #[derive(Debug)] struct FooBar; #[derive(Debug)] struct BarFoo; // The `std::ops::Add` trait is used to specify the functionality of `+`. // Here, we make `Add<Bar>` - the trait for addition with a RHS of type `Bar`. // The following block implements the operation: Foo + Bar = FooBar impl ops::Add<Bar> for Foo { type Output = FooBar; fn add(self, _rhs: Bar) -> FooBar { println!("> Foo.add(Bar) was called"); FooBar } } // By reversing the types, we end up implementing non-commutative addition. // Here, we make `Add<Foo>` - the trait for addition with a RHS of type `Foo`. // This block implements the operation: Bar + Foo = BarFoo impl ops::Add<Foo> for Bar { type Output = BarFoo; fn add(self, _rhs: Foo) -> BarFoo { println!("> Bar.add(Foo) was called"); BarFoo } } fn main() { println!("Foo + Bar = {:?}", Foo + Bar); println!("Bar + Foo = {:?}", Bar + Foo); }
See Also
Drop
The Drop
trait only has one method: drop
, which is called automatically
when an object goes out of scope. The main use of the Drop
trait is to free the
resources that the implementor instance owns.
Box
, Vec
, String
, File
, and Process
are some examples of types that
implement the Drop
trait to free resources. The Drop
trait can also be
manually implemented for any custom data type.
The following example adds a print to console to the drop
function to announce
when it is called.
struct Droppable { name: &'static str, } // This trivial implementation of `drop` adds a print to console. impl Drop for Droppable { fn drop(&mut self) { println!("> Dropping {}", self.name); } } fn main() { let _a = Droppable { name: "a" }; // block A { let _b = Droppable { name: "b" }; // block B { let _c = Droppable { name: "c" }; let _d = Droppable { name: "d" }; println!("Exiting block B"); } println!("Just exited block B"); println!("Exiting block A"); } println!("Just exited block A"); // Variable can be manually dropped using the `drop` function drop(_a); // TODO ^ Try commenting this line println!("end of the main function"); // `_a` *won't* be `drop`ed again here, because it already has been // (manually) `drop`ed }
Iterators
The Iterator
trait is used to implement iterators over collections such as arrays.
The trait requires only a method to be defined for the next
element,
which may be manually defined in an impl
block or automatically
defined (as in arrays and ranges).
As a point of convenience for common situations, the for
construct
turns some collections into iterators using the .into_iter()
method.
struct Fibonacci { curr: u32, next: u32, } // Implement `Iterator` for `Fibonacci`. // The `Iterator` trait only requires a method to be defined for the `next` element. impl Iterator for Fibonacci { type Item = u32; // Here, we define the sequence using `.curr` and `.next`. // The return type is `Option<T>`: // * When the `Iterator` is finished, `None` is returned. // * Otherwise, the next value is wrapped in `Some` and returned. fn next(&mut self) -> Option<u32> { let new_next = self.curr + self.next; self.curr = self.next; self.next = new_next; // Since there's no endpoint to a Fibonacci sequence, the `Iterator` // will never return `None`, and `Some` is always returned. Some(self.curr) } } // Returns a Fibonacci sequence generator fn fibonacci() -> Fibonacci { Fibonacci { curr: 0, next: 1 } } fn main() { // `0..3` is an `Iterator` that generates: 0, 1, and 2. let mut sequence = 0..3; println!("Four consecutive `next` calls on 0..3"); println!("> {:?}", sequence.next()); println!("> {:?}", sequence.next()); println!("> {:?}", sequence.next()); println!("> {:?}", sequence.next()); // `for` works through an `Iterator` until it returns `None`. // Each `Some` value is unwrapped and bound to a variable (here, `i`). println!("Iterate through 0..3 using `for`"); for i in 0..3 { println!("> {}", i); } // The `take(n)` method reduces an `Iterator` to its first `n` terms. println!("The first four terms of the Fibonacci sequence are: "); for i in fibonacci().take(4) { println!("> {}", i); } // The `skip(n)` method shortens an `Iterator` by dropping its first `n` terms. println!("The next four terms of the Fibonacci sequence are: "); for i in fibonacci().skip(4).take(4) { println!("> {}", i); } let array = [1u32, 3, 3, 7]; // The `iter` method produces an `Iterator` over an array/slice. println!("Iterate the following array {:?}", &array); for i in array.iter() { println!("> {}", i); } }
impl Trait
If your function returns a type that implements MyTrait
, you can write its
return type as -> impl MyTrait
. This can help simplify your type signatures quite a lot!
use std::iter; use std::vec::IntoIter; // This function combines two `Vec<i32>` and returns an iterator over it. // Look how complicated its return type is! fn combine_vecs_explicit_return_type( v: Vec<i32>, u: Vec<i32>, ) -> iter::Cycle<iter::Chain<IntoIter<i32>, IntoIter<i32>>> { v.into_iter().chain(u.into_iter()).cycle() } // This is the exact same function, but its return type uses `impl Trait`. // Look how much simpler it is! fn combine_vecs( v: Vec<i32>, u: Vec<i32>, ) -> impl Iterator<Item=i32> { v.into_iter().chain(u.into_iter()).cycle() } fn main() { let v1 = vec![1, 2, 3]; let v2 = vec![4, 5]; let mut v3 = combine_vecs(v1, v2); assert_eq!(Some(1), v3.next()); assert_eq!(Some(2), v3.next()); assert_eq!(Some(3), v3.next()); assert_eq!(Some(4), v3.next()); assert_eq!(Some(5), v3.next()); println!("all done"); }
More importantly, some Rust types can't be written out. For example, every
closure has its own unnamed concrete type. Before impl Trait
syntax, you had
to allocate on the heap in order to return a closure. But now you can do it all
statically, like this:
// Returns a function that adds `y` to its input fn make_adder_function(y: i32) -> impl Fn(i32) -> i32 { let closure = move |x: i32| { x + y }; closure } fn main() { let plus_one = make_adder_function(1); assert_eq!(plus_one(2), 3); }
You can also use impl Trait
to return an iterator that uses map
or filter
closures! This makes using map
and filter
easier. Because closure types don't
have names, you can't write out an explicit return type if your function returns
iterators with closures. But with impl Trait
you can do this easily:
fn double_positives<'a>(numbers: &'a Vec<i32>) -> impl Iterator<Item = i32> + 'a { numbers .iter() .filter(|x| x > &&0) .map(|x| x * 2) }
Clone
When dealing with resources, the default behavior is to transfer them during assignments or function calls. However, sometimes we need to make a copy of the resource as well.
The Clone
trait helps us do exactly this. Most commonly, we can
use the .clone()
method defined by the Clone
trait.
// A unit struct without resources #[derive(Debug, Clone, Copy)] struct Unit; // A tuple struct with resources that implements the `Clone` trait #[derive(Clone, Debug)] struct Pair(Box<i32>, Box<i32>); fn main() { // Instantiate `Unit` let unit = Unit; // Copy `Unit`, there are no resources to move let copied_unit = unit; // Both `Unit`s can be used independently println!("original: {:?}", unit); println!("copy: {:?}", copied_unit); // Instantiate `Pair` let pair = Pair(Box::new(1), Box::new(2)); println!("original: {:?}", pair); // Move `pair` into `moved_pair`, moves resources let moved_pair = pair; println!("moved: {:?}", moved_pair); // Error! `pair` has lost its resources //println!("original: {:?}", pair); // TODO ^ Try uncommenting this line // Clone `moved_pair` into `cloned_pair` (resources are included) let cloned_pair = moved_pair.clone(); // Drop the original pair using std::mem::drop drop(moved_pair); // Error! `moved_pair` has been dropped //println!("copy: {:?}", moved_pair); // TODO ^ Try uncommenting this line // The result from .clone() can still be used! println!("clone: {:?}", cloned_pair); }
Supertraits
Rust doesn't have "inheritance", but you can define a trait as being a superset of another trait. For example:
trait Person { fn name(&self) -> String; } // Person is a supertrait of Student. // Implementing Student requires you to also impl Person. trait Student: Person { fn university(&self) -> String; } trait Programmer { fn fav_language(&self) -> String; } // CompSciStudent (computer science student) is a subtrait of both Programmer // and Student. Implementing CompSciStudent requires you to impl both supertraits. trait CompSciStudent: Programmer + Student { fn git_username(&self) -> String; } fn comp_sci_student_greeting(student: &dyn CompSciStudent) -> String { format!( "My name is {} and I attend {}. My favorite language is {}. My Git username is {}", student.name(), student.university(), student.fav_language(), student.git_username() ) } fn main() {}
See also:
The Rust Programming Language chapter on supertraits
Disambiguating overlapping traits
A type can implement many different traits. What if two traits both require the same name? For example, many traits might have a method named get()
. They might even have different return types!
Good news: because each trait implementation gets its own impl
block, it's
clear which trait's get
method you're implementing.
What about when it comes time to call those methods? To disambiguate between them, we have to use Fully Qualified Syntax.
trait UsernameWidget { // Get the selected username out of this widget fn get(&self) -> String; } trait AgeWidget { // Get the selected age out of this widget fn get(&self) -> u8; } // A form with both a UsernameWidget and an AgeWidget struct Form { username: String, age: u8, } impl UsernameWidget for Form { fn get(&self) -> String { self.username.clone() } } impl AgeWidget for Form { fn get(&self) -> u8 { self.age } } fn main() { let form = Form{ username: "rustacean".to_owned(), age: 28, }; // If you uncomment this line, you'll get an error saying // "multiple `get` found". Because, after all, there are multiple methods // named `get`. // println!("{}", form.get()); let username = <Form as UsernameWidget>::get(&form); assert_eq!("rustacean".to_owned(), username); let age = <Form as AgeWidget>::get(&form); assert_eq!(28, age); }
See also:
The Rust Programming Language chapter on Fully Qualified syntax
macro_rules!
Rust, metaprogramlamaya izin veren güçlü bir macro sistemi sağlar. Önceki bölümlerde gördüğünüz gibi, macro'lar fonksiyonlara benziyor, ancak adlarının bir !
patlamasıyla bitmesi dışında, ancak bir fonksiyon çağrısı oluşturmak yerine, macro'lar programın geri kalanıyla derlenen kaynak koduna genişletilir.
Bununla birlikte, C ve diğer dillerdeki macro'lardan farklı olarak, Rust macro'ları string ön işlemesi yerine soyut(abstract) söz dizimi ağaçlarına genişletilir, böylece beklenmedik öncelik hataları alınmaz.
Macro'lar macro_rules!
macro'su kullanılarak oluşturulur.
// `say_hello` isimli basit bir macro. macro_rules! say_hello { // `()` macro'nun argüman almadığını belirtir. () => { // Macro bu bloğun içeriklerini genişletir. println!("Hello!"); }; } fn main() { // Bu çağrım `println!("Hello");` e genişletir say_hello!() }
Macro'lar neden kullanışlıdır?
-
Kendini tekrar etmez. Birden çok yerde, ancak farklı türlerde benzer fonksiyoneliteye ihtiyaç duyabileceğiniz birçok durum vardır. Genellikle bir macro yazmak, kodun tekrarlanmasını önlemenin yararlı bir yoludur. (Bununla ilgili daha fazlası sonra...)
-
Etki alanına özgü diller. Macro'lar belirli bir amaç için özel söz dizimi tanımlanmasına izin verir.(Bununla ilgili daha fazlası sonra...)
-
Çeşitli interface(arayüz)'ler. Bazen değişken sayısında argüman alan bir interface tanımlamak istersiniz. Bir örnek olarak
println!
string'in biçimine bağlı olarak herhangi bir sayıda argüman alabilir.(Bununla ilgili daha fazlası sonra...)
Syntax
In following subsections, we will show how to define macros in Rust. There are three basic ideas:
Designators
The arguments of a macro are prefixed by a dollar sign $
and type annotated
with a designator:
macro_rules! create_function { // This macro takes an argument of designator `ident` and // creates a function named `$func_name`. // The `ident` designator is used for variable/function names. ($func_name:ident) => { fn $func_name() { // The `stringify!` macro converts an `ident` into a string. println!("You called {:?}()", stringify!($func_name)); } }; } // Create functions named `foo` and `bar` with the above macro. create_function!(foo); create_function!(bar); macro_rules! print_result { // This macro takes an expression of type `expr` and prints // it as a string along with its result. // The `expr` designator is used for expressions. ($expression:expr) => { // `stringify!` will convert the expression *as it is* into a string. println!("{:?} = {:?}", stringify!($expression), $expression); }; } fn main() { foo(); bar(); print_result!(1u32 + 1); // Recall that blocks are expressions too! print_result!({ let x = 1u32; x * x + 2 * x - 1 }); }
These are some of the available designators:
block
expr
is used for expressionsident
is used for variable/function namesitem
literal
is used for literal constantspat
(pattern)path
stmt
(statement)tt
(token tree)ty
(type)vis
(visibility qualifier)
For a complete list, see the Rust Reference.
Overload
Macros can be overloaded to accept different combinations of arguments.
In that regard, macro_rules!
can work similarly to a match block:
// `test!` will compare `$left` and `$right` // in different ways depending on how you invoke it: macro_rules! test { // Arguments don't need to be separated by a comma. // Any template can be used! ($left:expr; and $right:expr) => { println!("{:?} and {:?} is {:?}", stringify!($left), stringify!($right), $left && $right) }; // ^ each arm must end with a semicolon. ($left:expr; or $right:expr) => { println!("{:?} or {:?} is {:?}", stringify!($left), stringify!($right), $left || $right) }; } fn main() { test!(1i32 + 1 == 2i32; and 2i32 * 2 == 4i32); test!(true; or false); }
Repeat
Macros can use +
in the argument list to indicate that an argument may
repeat at least once, or *
, to indicate that the argument may repeat zero or
more times.
In the following example, surrounding the matcher with $(...),+
will
match one or more expression, separated by commas.
Also note that the semicolon is optional on the last case.
// `find_min!` will calculate the minimum of any number of arguments. macro_rules! find_min { // Base case: ($x:expr) => ($x); // `$x` followed by at least one `$y,` ($x:expr, $($y:expr),+) => ( // Call `find_min!` on the tail `$y` std::cmp::min($x, find_min!($($y),+)) ) } fn main() { println!("{}", find_min!(1u32)); println!("{}", find_min!(1u32 + 2, 2u32)); println!("{}", find_min!(5u32, 2u32 * 3, 4u32)); }
DRY (Don't Repeat Yourself)
Macros allow writing DRY code by factoring out the common parts of functions
and/or test suites. Here is an example that implements and tests the +=
, *=
and -=
operators on Vec<T>
:
use std::ops::{Add, Mul, Sub}; macro_rules! assert_equal_len { // The `tt` (token tree) designator is used for // operators and tokens. ($a:expr, $b:expr, $func:ident, $op:tt) => { assert!($a.len() == $b.len(), "{:?}: dimension mismatch: {:?} {:?} {:?}", stringify!($func), ($a.len(),), stringify!($op), ($b.len(),)); }; } macro_rules! op { ($func:ident, $bound:ident, $op:tt, $method:ident) => { fn $func<T: $bound<T, Output=T> + Copy>(xs: &mut Vec<T>, ys: &Vec<T>) { assert_equal_len!(xs, ys, $func, $op); for (x, y) in xs.iter_mut().zip(ys.iter()) { *x = $bound::$method(*x, *y); // *x = x.$method(*y); } } }; } // Implement `add_assign`, `mul_assign`, and `sub_assign` functions. op!(add_assign, Add, +=, add); op!(mul_assign, Mul, *=, mul); op!(sub_assign, Sub, -=, sub); mod test { use std::iter; macro_rules! test { ($func:ident, $x:expr, $y:expr, $z:expr) => { #[test] fn $func() { for size in 0usize..10 { let mut x: Vec<_> = iter::repeat($x).take(size).collect(); let y: Vec<_> = iter::repeat($y).take(size).collect(); let z: Vec<_> = iter::repeat($z).take(size).collect(); super::$func(&mut x, &y); assert_eq!(x, z); } } }; } // Test `add_assign`, `mul_assign`, and `sub_assign`. test!(add_assign, 1u32, 2u32, 3u32); test!(mul_assign, 2u32, 3u32, 6u32); test!(sub_assign, 3u32, 2u32, 1u32); }
$ rustc --test dry.rs && ./dry
running 3 tests
test test::mul_assign ... ok
test test::add_assign ... ok
test test::sub_assign ... ok
test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured
Domain Specific Languages (DSLs)
A DSL is a mini "language" embedded in a Rust macro. It is completely valid Rust because the macro system expands into normal Rust constructs, but it looks like a small language. This allows you to define concise or intuitive syntax for some special functionality (within bounds).
Suppose that I want to define a little calculator API. I would like to supply an expression and have the output printed to console.
macro_rules! calculate { (eval $e:expr) => {{ { let val: usize = $e; // Force types to be integers println!("{} = {}", stringify!{$e}, val); } }}; } fn main() { calculate! { eval 1 + 2 // hehehe `eval` is _not_ a Rust keyword! } calculate! { eval (1 + 2) * (3 / 4) } }
Output:
1 + 2 = 3
(1 + 2) * (3 / 4) = 0
This was a very simple example, but much more complex interfaces have been
developed, such as lazy_static
or
clap
.
Also, note the two pairs of braces in the macro. The outer ones are
part of the syntax of macro_rules!
, in addition to ()
or []
.
Variadic Interfaces
A variadic interface takes an arbitrary number of arguments. For example,
println!
can take an arbitrary number of arguments, as determined by the
format string.
We can extend our calculate!
macro from the previous section to be variadic:
macro_rules! calculate { // The pattern for a single `eval` (eval $e:expr) => {{ { let val: usize = $e; // Force types to be integers println!("{} = {}", stringify!{$e}, val); } }}; // Decompose multiple `eval`s recursively (eval $e:expr, $(eval $es:expr),+) => {{ calculate! { eval $e } calculate! { $(eval $es),+ } }}; } fn main() { calculate! { // Look ma! Variadic `calculate!`! eval 1 + 2, eval 3 + 4, eval (2 * 3) + 1 } }
Output:
1 + 2 = 3
3 + 4 = 7
(2 * 3) + 1 = 7
Hata Yönetimi
Hata yönetimi, başarısızlık olasılığını ele alma sürecidir. Örneğin, bir dosyayı okuyamamak ve kötü girdi kullanmaya devam etmek açık bir şekilde problemli olacaktır. Bu hataları fark etmek ve açıkça yönetmek, programın geri kalanını çeşitli tuzaklardan kurtarır.
Aşağıdaki alt bölümlerde açıklanan Rust'ta hatalarla başa çıkmanın çeşitli yolları vardır. Hepsinin az veya çok farklılıkları ve farklı kullanım durumları vardır. Kural olarak:
Açık bir panic
temel olarak testler ve düzeltilemeyen hatalarla başa çıkmak için kullanışlıdır.
Prototipleme için, örneğin henüz implemente edilmemiş fonksiyonlarla uğraşırken kullanışlı olabilir, ama bu durumlarda daha açıklayıcı implemente edilmemiş
daha iyidir. Testlerde panic
açıkça başarısız olmanın mantıklı sebebidir.
Option
tipi bir değerin isteğe bağlı olduğu veya bir değer eksikliğinin hata durumu olmadığı durumlar içindir.
Örneğin bir dizinin üstü - /
ve C:
den biri yok. Option
lar ile uğraşırken, prototip oluşturma ve bir değer olacağının kesin olarak garantili olduğu kesinlikle kesin olan durumlarda unwrap
(açma) uygundur. Bununla birlikte, expect
(bekleme)
bir şeyler ters giderse diye bir hata mesajı belirlemenize izin verdiği için daha kullanışlıdır.
Bir şeylerin ters gitme ihtimali olduğunda ve çağırıcının sorunla ilgilenmesi gerektiğinde, Result
(sonuç)ı kullanın. Aynı zamanda unwrap
ve expect
de yapabilirsiniz. (bir test veya hızlı prototip olmadıkça lütfen bunu yapmayın).
Hata işlemeye ilişkin daha titiz bir tartışma için İngilizce Resmi Kitaptaki hata yönetimi bölümüne bakın.
panic
Göreceğimiz en basit hata işleme mekanızması panic
tir. Bir hata mesajı yazdırır, yığını çözmeye başlar ve genellikle programı sonlandırır.
Aşağıda, hata koşulumuzda açıkça panic
i çağırıyoruz :
fn drink(beverage: &str) { // You shouldn't drink too much sugary beverages. if beverage == "lemonade" { panic!("AAAaaaaa!!!!"); } println!("Some refreshing {} is all I need.", beverage); } fn main() { drink("water"); drink("lemonade"); }
Option
& unwrap
Son örnekte, programı hataya teşvik edebileceğimizi gösterdik.
Programımıza eğer royal(kraliyet mensubu) uygun olmayan bir hediye alıysa - snake(yılan) panic
yapmasını söyledik. Ama ya eğer royal bir hediye bekledi ve almadıysa? Bu da aynı derecede kötü olurdu, buna bir el atılması gerek!
Buna karşı null string (""
) testi yapabiliriz snake hediyesi için yaptığımız gibi.
Rust kullanırken, bunun yerine derleyicinin hediyenin olmadığı durumları göstermesini sağlayalım.
Bir yokluk olasılığı olduğunda, std
kütüphanesindeki Option<T>
isimli bir enum
kullanılır. Kendisini iki "seçenek"ten biri olarak gösterir:
Some(T)
:T
tipli bir öğe bulunduNone
: Öğe bulunamadı.
Bu vakalar, match
yoluyla ya da örtülü olarak
unwrap
yoluyla ele alınabilir. Örtülü ele alma ya içteki öğeyi döndürür ya da panic
.
panic
i expect ile manuel olarak özelleştirmenin bir yolu olmadığını unutmayın,
ama unwrap
aksi takdirde bizi açık ele almaya göre daha az anlamlı bir çıktıyla bırakır. Takip eden örnekte, açık ele alma istenirse panic
seçeneğini korurken daha kontrollü bir sonuç verir.
// Sıradan olan her şeyi gördü ve her hediyeyi iyi bir şekilde değerlendirebilir. // Tüm hediyeler açıkça `match` kullanılarak ele alınır. fn give_commoner(gift: Option<&str>) { // Her durum için bir eylem planı belirleyin. match gift { Some("snake") => println!("Yuck! I'm putting this snake back in the forest."), Some(inner) => println!("{}? How nice.", inner), None => println!("No gift? Oh well."), } } // Korunaklı royal snake hediyelerini gördüğünde `panic` olacaktır. // Tüm hediyeler açıkça `unwrap` kullanılarak ele alınır. fn give_royal(gift: Option<&str>) { // `unwrap` `None` aldığında yani hiçbir şey almadığında `panic` döndürür. let inside = gift.unwrap(); if inside == "snake" { panic!("AAAaaaaa!!!!"); } println!("I love {}s!!!!!", inside); } fn main() { let food = Some("cabbage"); let snake = Some("snake"); let void = None; give_commoner(food); give_commoner(snake); give_commoner(void); let bird = Some("robin"); let nothing = None; give_royal(bird); give_royal(nothing); }
Unpacking options with ?
You can unpack Option
s by using match
statements, but it's often easier to
use the ?
operator. If x
is an Option
, then evaluating x?
will return
the underlying value if x
is Some
, otherwise it will terminate whatever
function is being executed and return None
.
fn next_birthday(current_age: Option<u8>) -> Option<String> { // If `current_age` is `None`, this returns `None`. // If `current_age` is `Some`, the inner `u8` gets assigned to `next_age` let next_age: u8 = current_age?; Some(format!("Next year I will be {}", next_age)) }
You can chain many ?
s together to make your code much more readable.
struct Person { job: Option<Job>, } #[derive(Clone, Copy)] struct Job { phone_number: Option<PhoneNumber>, } #[derive(Clone, Copy)] struct PhoneNumber { area_code: Option<u8>, number: u32, } impl Person { // Gets the area code of the phone number of the person's job, if it exists. fn work_phone_area_code(&self) -> Option<u8> { // This would need many nested `match` statements without the `?` operator. // It would take a lot more code - try writing it yourself and see which // is easier. self.job?.phone_number?.area_code } } fn main() { let p = Person { job: Some(Job { phone_number: Some(PhoneNumber { area_code: Some(61), number: 439222222, }), }), }; assert_eq!(p.work_phone_area_code(), Some(61)); }
Combinators(Birleştiriciler): map
match
, Option
ları yönetmek için geçerli bir yöntem. Ancak, özellikle yalnızca bir girdiyle geçerli olan işlemler söz konusu olduğunda yoğun kullanımı sıkıcı bulabilirsiniz. Bu durumlarda, kontrol akışını modüler bir şekilde yönetmek için birleştiriciler(combinators) kullanılabilir.
Option
, Some -> Some
None -> None
haritalaması için map()
isimli basit birleştirici metoda sahiptir. Çoklu map()
çağrıları esneklik için zincirlenebilir.
Takip eden örnekte, process()
sıkıştırılırken önceki tüm fonksiyonların yerine geçer.
#![allow(dead_code)] #[derive(Debug)] enum Food { Apple, Carrot, Potato } #[derive(Debug)] struct Peeled(Food); #[derive(Debug)] struct Chopped(Food); #[derive(Debug)] struct Cooked(Food); // Yiyecekleri soyma kısmı. Eğer hiçbir şey yoksa `None` döndürür. // Aksi halde, soyulmuş yiyeceği döndürür. fn peel(food: Option<Food>) -> Option<Peeled> { match food { Some(food) => Some(Peeled(food)), None => None, } } // Yiyecekleri doğrama kısmı. Eğer hiçbir şey yoksa `None` döndürür. // Aksi halde, doğranmış yiyeceği döndürür. fn chop(peeled: Option<Peeled>) -> Option<Chopped> { match peeled { Some(Peeled(food)) => Some(Chopped(food)), None => None, } } // Yiyecekleri pişirme kısmı. Burada durumu yönetmek için `match` yerine `map()` kullanıyoruz. fn cook(chopped: Option<Chopped>) -> Option<Cooked> { chopped.map(|Chopped(food)| Cooked(food)) } // Yiyecekleri sırayla soyma, doğrama ve pişirme fonksiyonu. // Kodu basitleştirmek için `map()`in birden fazla kullanımını zincirliyoruz. fn process(food: Option<Food>) -> Option<Cooked> { food.map(|f| Peeled(f)) .map(|Peeled(f)| Chopped(f)) .map(|Chopped(f)| Cooked(f)) } // Yemeye çalışmadan önce yiyecek olup olmadığını kontrol edin. fn eat(food: Option<Cooked>) { match food { Some(food) => println!("Mmm. {:?} güzeldi, sevdim.", food), None => println!("Olamaz! Bu yenilebilir değil."), } } fn main() { let apple = Some(Food::Apple); let carrot = Some(Food::Carrot); let potato = None; let cooked_apple = cook(chop(peel(apple))); let cooked_carrot = cook(chop(peel(carrot))); // `Şimdi daha basit görünen process()`e bir bakış atalım . let cooked_potato = process(potato); eat(cooked_apple); eat(cooked_carrot); eat(cooked_potato); }
Ayrıca bakın:
closures, Option
, Option::map()
Combinators (Birleştiriciler): and_then
map()
, match
ifadelerini basitleştirmenin zincirlenebilir bir yolu olarak tanımlanır.
Ancak, Option<T>
döndüren bir fonksiyonda map()
kullanımı
iç içe geçmiş Option<Option<T>>
ile sonlanır. Birden çok çağrıyı birlikte zincirlemek kafa karıştırıcı olabilir. Tam burada, bazı dillerde "flatmap" olarak bilinen and_then()
adlı başka bir birleştirici devreye girer.
and_then()
paketlenmiş değer ile fonksiyon girdisini çağırır ve sonucu döndürür. Eğer Option
değeri None
ise, onun yerine None
değerini döndürür.
Takip eden örnekte, cookable_v2()
, Option<Food>
ile sonuçlanır.
and_then()
yerine map()
kullanımı eat()
için geçersiz bir tip olan Option<Option<Food>>
sonucunu verecektir.
#![allow(dead_code)] #[derive(Debug)] enum Food { CordonBleu, Steak, Sushi } #[derive(Debug)] enum Day { Monday, Tuesday, Wednesday } // Sushi için gereken malzemelerimiz yok. fn have_ingredients(food: Food) -> Option<Food> { match food { Food::Sushi => None, _ => Some(food), } } //Cordon Bleu hariç her şeyin tarifi var. fn have_recipe(food: Food) -> Option<Food> { match food { Food::CordonBleu => None, _ => Some(food), } } // Bir yemeği yapabilmek için hem tarifine hem de gerektirdiği malzemelere sahip olmalıyız. // Bu mantığı bir `match `zinciriyle temsil edebiliriz: fn cookable_v1(food: Food) -> Option<Food> { match have_recipe(food) { None => None, Some(food) => match have_ingredients(food) { None => None, Some(food) => Some(food), }, } } // Bu, `and_then()` ile rahatlıkla yeniden yazılabilir: fn cookable_v2(food: Food) -> Option<Food> { have_recipe(food).and_then(have_ingredients) } fn eat(food: Food, day: Day) { match cookable_v2(food) { Some(food) => println!("Yay! On {:?} we get to eat {:?}.", day, food), None => println!("Oh no. We don't get to eat on {:?}?", day), } } fn main() { let (cordon_bleu, steak, sushi) = (Food::CordonBleu, Food::Steak, Food::Sushi); eat(cordon_bleu, Day::Monday); eat(steak, Day::Tuesday); eat(sushi, Day::Wednesday); }
Ayrıca bakınız:
closures, Option
, and Option::and_then()
Result
Result
, Option
tipinin olası yokluk yerine hatayı açıklayan daha zengin versiyonudur.
Yani, Result<T, E>
iki sonuçtan birine sahip olabilir:
Ok(T)
:T
öğesi bulundu.Err(E)
:E
öğesi ile ilgili bir hata bulundu.
Geleneksel olarak, beklenen sonuç Ok
iken beklenmedik sonuç Err
'dir.
Option
gibi, Result
'ın da kendisiyle ilişkili birçok metodu vardır. Örneğin unwrap()
, ya T
öğesini ya da panic
'i oluşturur. Durum ele alma işlemi için Result
ve Option
örtüşen birçok birleştirici vardır.
Rust ile çalışırken, parse()
metodu gibi
Result
türünü döndüren metotlarla karşılaşmanız pek mümkündür. Bir string'i diğer bir türe ayrıştırmak her zaman mümkün olmayabilir, bu nedenle parse()
olası başarısızlığı gösteren bir
Result
döndürür.
Hadi başarılı ve başarısız şekilde parse()
metoduna bakalım:
fn multiply(first_number_str: &str, second_number_str: &str) -> i32 { // Let's try using `unwrap()` to get the number out. Will it bite us? let first_number = first_number_str.parse::<i32>().unwrap(); let second_number = second_number_str.parse::<i32>().unwrap(); first_number * second_number } fn main() { let twenty = multiply("10", "2"); println!("double is {}", twenty); let tt = multiply("t", "2"); println!("double is {}", tt); }
Başarısız durumda, parse()
, unwrap()
metodunun panic
çağırmaması için bizi bir hatayla bırakır. Ek olarak, panic
programımızdan çıkar ve hoş olmayan bir hata mesajı verir.
Hata mesajımızın kalitesini artırmak için, dönüş türü hakkında daha spesifik olmalı ve hatayı açıkça ele almalıyız.
Result
'ı main
içinde kullanmak
Result
türü, açıkça belirtilmişse main
'in dönüş türü de olabilir. Tipik olarak main
şu biçimde olacaktır:
fn main() { println!("Hello World!"); }
Bununla birlikte, main
, bir Result
türüne de sahip olabilir. Eğer bir hata oluşursa, main
fonksiyonunun içinde bir hata kodu oluşturur ve hatanın debug temsilini yazdırır.
(Debug
niteliğini kullanarak). Takip eden örnekte, böyle bir senaryoyu gösterir ve takip eden bölümde ele alınan hususlara değinir.
use std::num::ParseIntError; fn main() -> Result<(), ParseIntError> { let number_str = "10"; let number = match number_str.parse::<i32>() { Ok(number) => number, Err(e) => return Err(e), }; println!("{}", number); Ok(()) }
map
for Result
Panicking in the previous example's multiply
does not make for robust code.
Generally, we want to return the error to the caller so it can decide what is
the right way to respond to errors.
We first need to know what kind of error type we are dealing with. To determine
the Err
type, we look to parse()
, which is implemented with the
FromStr
trait for i32
. As a result, the Err
type is
specified as ParseIntError
.
In the example below, the straightforward match
statement leads to code
that is overall more cumbersome.
use std::num::ParseIntError; // With the return type rewritten, we use pattern matching without `unwrap()`. fn multiply(first_number_str: &str, second_number_str: &str) -> Result<i32, ParseIntError> { match first_number_str.parse::<i32>() { Ok(first_number) => { match second_number_str.parse::<i32>() { Ok(second_number) => { Ok(first_number * second_number) }, Err(e) => Err(e), } }, Err(e) => Err(e), } } fn print(result: Result<i32, ParseIntError>) { match result { Ok(n) => println!("n is {}", n), Err(e) => println!("Error: {}", e), } } fn main() { // This still presents a reasonable answer. let twenty = multiply("10", "2"); print(twenty); // The following now provides a much more helpful error message. let tt = multiply("t", "2"); print(tt); }
Luckily, Option
's map
, and_then
, and many other combinators are also
implemented for Result
. Result
contains a complete listing.
use std::num::ParseIntError; // As with `Option`, we can use combinators such as `map()`. // This function is otherwise identical to the one above and reads: // Modify n if the value is valid, otherwise pass on the error. fn multiply(first_number_str: &str, second_number_str: &str) -> Result<i32, ParseIntError> { first_number_str.parse::<i32>().and_then(|first_number| { second_number_str.parse::<i32>().map(|second_number| first_number * second_number) }) } fn print(result: Result<i32, ParseIntError>) { match result { Ok(n) => println!("n is {}", n), Err(e) => println!("Error: {}", e), } } fn main() { // This still presents a reasonable answer. let twenty = multiply("10", "2"); print(twenty); // The following now provides a much more helpful error message. let tt = multiply("t", "2"); print(tt); }
aliases for Result
How about when we want to reuse a specific Result
type many times?
Recall that Rust allows us to create aliases. Conveniently,
we can define one for the specific Result
in question.
At a module level, creating aliases can be particularly helpful. Errors
found in a specific module often have the same Err
type, so a single alias
can succinctly define all associated Results
. This is so useful that the
std
library even supplies one: io::Result
!
Here's a quick example to show off the syntax:
use std::num::ParseIntError; // Define a generic alias for a `Result` with the error type `ParseIntError`. type AliasedResult<T> = Result<T, ParseIntError>; // Use the above alias to refer to our specific `Result` type. fn multiply(first_number_str: &str, second_number_str: &str) -> AliasedResult<i32> { first_number_str.parse::<i32>().and_then(|first_number| { second_number_str.parse::<i32>().map(|second_number| first_number * second_number) }) } // Here, the alias again allows us to save some space. fn print(result: AliasedResult<i32>) { match result { Ok(n) => println!("n is {}", n), Err(e) => println!("Error: {}", e), } } fn main() { print(multiply("10", "2")); print(multiply("t", "2")); }
See also:
Early returns
In the previous example, we explicitly handled the errors using combinators.
Another way to deal with this case analysis is to use a combination of
match
statements and early returns.
That is, we can simply stop executing the function and return the error if one occurs. For some, this form of code can be easier to both read and write. Consider this version of the previous example, rewritten using early returns:
use std::num::ParseIntError; fn multiply(first_number_str: &str, second_number_str: &str) -> Result<i32, ParseIntError> { let first_number = match first_number_str.parse::<i32>() { Ok(first_number) => first_number, Err(e) => return Err(e), }; let second_number = match second_number_str.parse::<i32>() { Ok(second_number) => second_number, Err(e) => return Err(e), }; Ok(first_number * second_number) } fn print(result: Result<i32, ParseIntError>) { match result { Ok(n) => println!("n is {}", n), Err(e) => println!("Error: {}", e), } } fn main() { print(multiply("10", "2")); print(multiply("t", "2")); }
At this point, we've learned to explicitly handle errors using combinators and early returns. While we generally want to avoid panicking, explicitly handling all of our errors is cumbersome.
In the next section, we'll introduce ?
for the cases where we simply
need to unwrap
without possibly inducing panic
.
Introducing ?
Sometimes we just want the simplicity of unwrap
without the possibility of
a panic
. Until now, unwrap
has forced us to nest deeper and deeper when
what we really wanted was to get the variable out. This is exactly the purpose of ?
.
Upon finding an Err
, there are two valid actions to take:
panic!
which we already decided to try to avoid if possiblereturn
because anErr
means it cannot be handled
?
is almost1 exactly equivalent to an unwrap
which return
s
instead of panic
king on Err
s. Let's see how we can simplify the earlier
example that used combinators:
use std::num::ParseIntError; fn multiply(first_number_str: &str, second_number_str: &str) -> Result<i32, ParseIntError> { let first_number = first_number_str.parse::<i32>()?; let second_number = second_number_str.parse::<i32>()?; Ok(first_number * second_number) } fn print(result: Result<i32, ParseIntError>) { match result { Ok(n) => println!("n is {}", n), Err(e) => println!("Error: {}", e), } } fn main() { print(multiply("10", "2")); print(multiply("t", "2")); }
The try!
macro
Before there was ?
, the same functionality was achieved with the try!
macro.
The ?
operator is now recommended, but you may still find try!
when looking
at older code. The same multiply
function from the previous example
would look like this using try!
:
// To compile and run this example without errors, while using Cargo, change the value // of the `edition` field, in the `[package]` section of the `Cargo.toml` file, to "2015". use std::num::ParseIntError; fn multiply(first_number_str: &str, second_number_str: &str) -> Result<i32, ParseIntError> { let first_number = try!(first_number_str.parse::<i32>()); let second_number = try!(second_number_str.parse::<i32>()); Ok(first_number * second_number) } fn print(result: Result<i32, ParseIntError>) { match result { Ok(n) => println!("n is {}", n), Err(e) => println!("Error: {}", e), } } fn main() { print(multiply("10", "2")); print(multiply("t", "2")); }
See re-enter ? for more details.
Çoklu Hata Tipleri
Önceki örnekler oldukça rahattı; Bir Result
ın bir başka Result
ile etkileşimi ve bir Option
ın başka bir Option
ile etkileşimi gibiydi.
Bazen bir Option
diğer bir Result
ile etkileşim kurmak zorundadır, ya da
Result<T, Error1>
, Result<T, Error2>
ile. Tüm bu durumlarda, farklı hata türlerimizi, birleştirilebilir ve etkileşimi kolay hale getirecek şekilde yönetmek istiyoruz.
Takip eden örnekte, iki unwrap
örneği farklı hata tipleri oluşturur. parse::<i32>
bir
Result<i32, ParseIntError>
döndürürken,Vec::first
bir Option
döndürür:
fn double_first(vec: Vec<&str>) -> i32 { let first = vec.first().unwrap(); // error 1'i oluşturur 2 * first.parse::<i32>().unwrap() // error 2'yi oluşturur } fn main() { let numbers = vec!["42", "93", "18"]; let empty = vec![]; let strings = vec!["tofu", "93", "18"]; println!("The first doubled is {}", double_first(numbers)); println!("The first doubled is {}", double_first(empty)); // Error 1: girdi vector'ü boş println!("The first doubled is {}", double_first(strings)); // Error 2: öğe sayıya ayrıştırılamaz }
İlerleyen bölümlerde, bu tip problemler için birkaç stratejileri ele alacağız.
Result
(Sonuç)'ları Option
(Seçenek)'ların dışına çekmek
Karışık hata tiplerini ele almanın en basit yolu, onları birbirine gömmektir.
use std::num::ParseIntError; fn double_first(vec: Vec<&str>) -> Option<Result<i32, ParseIntError>> { vec.first().map(|first| { first.parse::<i32>().map(|n| 2 * n) }) } fn main() { let numbers = vec!["42", "93", "18"]; let empty = vec![]; let strings = vec!["tofu", "93", "18"]; println!("The first doubled is {:?}", double_first(numbers)); println!("The first doubled is {:?}", double_first(empty)); // Hata 1: girdi vektörü boş println!("The first doubled is {:?}", double_first(strings)); // Hata 2: öge bir sayıya ayrıştırılamıyor }
Hataların üzerinde işlem yapmayı durdurmak isteyeceğimiz zamanlar vardır (?
ile gibi) ama Option
None
(hiçbiri) olduğunda olduğu gibi devam edin. Result
ve Option
'ı değiştirmek için birkaç combinator(birleştirici) kullanışlıdır.
use std::num::ParseIntError; fn double_first(vec: Vec<&str>) -> Result<Option<i32>, ParseIntError> { let opt = vec.first().map(|first| { first.parse::<i32>().map(|n| 2 * n) }); opt.map_or(Ok(None), |r| r.map(Some)) } fn main() { let numbers = vec!["42", "93", "18"]; let empty = vec![]; let strings = vec!["tofu", "93", "18"]; println!("The first doubled is {:?}", double_first(numbers)); println!("The first doubled is {:?}", double_first(empty)); println!("The first doubled is {:?}", double_first(strings)); }
Hata Tipini Tanımlamak
Bazen, tüm farklı hataların yerine tek bir hata tipini kullanarak temsil etmek(yani diğer hataları maskelemek) kodu basitleştirir. Bunu özel bir hatayla göstereceğiz.
Rust, kendi hata tiplerimizi tanımlamamızı sağlar. Genel olarak, "iyi" bir hata tipi:
- Farklı hataları aynı tiple temsil eder
- Kullanıcıya güzel, anlaşılabilir hata mesajları sunar
- Diğer tiplerle kıyaslanması kolaydır
- İyi:
Err(EmptyVec)
- Kötü:
Err("Lütfen en az bir elemanlı bir vektör kullanın".to_owned())
- İyi:
- Hata hakkında bilgi tutar
- İyi:
Err(BadChar(c, position))
- Kötü:
Err("+ cannot be used here".to_owned())
- İyi:
- Diğer hatalarla iyi uyum sağlar
use std::fmt; type Result<T> = std::result::Result<T, DoubleError>; // Hata türlerimizi tanımlayalım. Bunlar, hata işleme durumlarımız için özelleştirilebilir. // Artık, altta yatan bir hata uygulamasını erteleyebileceğimiz veya hata arasında // bir şey yapabileceğimiz kendi hatalarımızı yazabileceğiz #[derive(Debug, Clone)] struct DoubleError; // Bir hatanın oluşturulması, görüntülenme biçiminden tamamen farklıdır. // Karmaşık mantığın görüntü tarzıyla karıştırılması konusunda endişelenmenize gerek yok. // // Hatalar hakkında fazladan bilgi saklamadığımızı unutmayın. Bu, türlerimizi bu bilgiyi // taşıyacak şekilde değiştirmeden hangi dizenin ayrıştırılamayacağını belirtemeyeceğimiz anlamına gelir. impl fmt::Display for DoubleError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "invalid first item to double") } } fn double_first(vec: Vec<&str>) -> Result<i32> { vec.first() // Hatayı yeni tipe değiştirelim. .ok_or(DoubleError) .and_then(|s| { s.parse::<i32>() // Burada da yeni hata tipini güncelleyelim. .map_err(|_| DoubleError) .map(|i| 2 * i) }) } fn print(result: Result<i32>) { match result { Ok(n) => println!("The first doubled is {}", n), Err(e) => println!("Error: {}", e), } } fn main() { let numbers = vec!["42", "93", "18"]; let empty = vec![]; let strings = vec!["tofu", "93", "18"]; print(double_first(numbers)); print(double_first(empty)); print(double_first(strings)); }
Box
ing Hataları
Orijinal hataları korurken basit kod yazmanın bir yolu onları Box
'lamaktır. Dezavantajı, temel alınan hata türünün yalnızca çalışma zamanında bilinmesi ve statik olarak belirlenmemesidir.
stdlib, Box'ın From
aracılığıyla Error
niteliğini uygulayan herhangi bir türden Box<Error>
nitelik nesnesine dönüştürme implementesini sağlayarak hatalarımızı Box'lamaya yardımcı olur.
use std::error; use std::fmt; // Takma adı `Box<error::Error>` olarak değiştirin. type Result<T> = std::result::Result<T, Box<dyn error::Error>>; #[derive(Debug, Clone)] struct EmptyVec; impl fmt::Display for EmptyVec { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "invalid first item to double") } } impl error::Error for EmptyVec {} fn double_first(vec: Vec<&str>) -> Result<i32> { vec.first() .ok_or_else(|| EmptyVec.into()) // Converts to Box .and_then(|s| { s.parse::<i32>() .map_err(|e| e.into()) // Converts to Box .map(|i| 2 * i) }) } fn print(result: Result<i32>) { match result { Ok(n) => println!("The first doubled is {}", n), Err(e) => println!("Error: {}", e), } } fn main() { let numbers = vec!["42", "93", "18"]; let empty = vec![]; let strings = vec!["tofu", "93", "18"]; print(double_first(numbers)); print(double_first(empty)); print(double_first(strings)); }
Ayrıca bakın:
Dinamik dağıtım ve Error
niteliği
?
'nin Diğer Kullanımları
Önceki örnekte, parse
(ayrıştırma) çağrısına anında tepkimizin bir kütüphane hatasından kaynaklanan hatayı bir boxed(kutulu) hataya map
lemek(eşlemek) olduğuna dikkat edin:
.and_then(|s| s.parse::<i32>()
.map_err(|e| e.into())
Bu basit ve yaygın bir işlem olduğundan, atlanması uygun olacaktır. Ne yazık ki and_then
yeterince esnek olmadığından, bunu yapamaz. Ancak, yerine ?
kullanabiliriz.
?
önceleri unwrap
ya da return Err(err)
olarak açıklanmıştı.
Bu çoğunlukla doğrudur. Aynı zamanda unwrap
ya da
return Err(From::from(err))
anlamına da gelir. From::from
farklı tipler arasındabir dönüştürme aracı olduğundan bu ?
kullandığınız yerde hatanın dönüş tipine dönüştürülebildiği anlamına gelir, otomatik olarak dönüştürecektir.
Burada, ?
kullanarak önceki örneği yeniden yazıyoruz. Sonuç olarak, map_err
, hata tipimiz için From::from
implemente edildiğinde kaybolacak:
use std::error; use std::fmt; // Takma adı `Box<dyn error::Error>`a değiştir. type Result<T> = std::result::Result<T, Box<dyn error::Error>>; #[derive(Debug)] struct EmptyVec; impl fmt::Display for EmptyVec { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "invalid first item to double") } } impl error::Error for EmptyVec {} // Öncekiyle aynı yapı, ancak tüm `Results`(sonuçları) zincirlemek // yerine `Options` yanına, `?` koyuyor, iç değeri hemen çıkarıyoruz. fn double_first(vec: Vec<&str>) -> Result<i32> { let first = vec.first().ok_or(EmptyVec)?; let parsed = first.parse::<i32>()?; Ok(2 * parsed) } fn print(result: Result<i32>) { match result { Ok(n) => println!("The first doubled is {}", n), Err(e) => println!("Error: {}", e), } } fn main() { let numbers = vec!["42", "93", "18"]; let empty = vec![]; let strings = vec!["tofu", "93", "18"]; print(double_first(numbers)); print(double_first(empty)); print(double_first(strings)); }
Bu aslında şu anda oldukça temiz. Orijinal panic
ile kıyaslandığında, unwrap
çağrılarıyla ?
nin yer değiştirmeye çok benzer, tabii dönüş tiplerinin Result
olması dışında. Sonuç olarak, en üst düzeyde yıkımları(destruct) gerektirir.
Ayrıca bakın:
From::from
ve ?
Wrapping(Açma) Hataları
Boxing hatalarına bir alternatif, onları kendi hata tipinize wrap etmek(sarmaktır).
use std::error; use std::error::Error as _; use std::num::ParseIntError; use std::fmt; type Result<T> = std::result::Result<T, DoubleError>; #[derive(Debug)] enum DoubleError { EmptyVec, // Hatalar için parse(ayrıştırma) hatası uygulamasını erteleyeceğiz // Ek bilgi sağlamak, tipe daha fazla veri eklemeyi gerektirir. Parse(ParseIntError), } impl fmt::Display for DoubleError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { DoubleError::EmptyVec => write!(f, "please use a vector with at least one element"), // Wrapped(sarılmış) hata ek bilgiler içerir ve source() metoduyla // source() metoduyla kullanılabilir. DoubleError::Parse(..) => write!(f, "the provided string could not be parsed as int"), } } } impl error::Error for DoubleError { fn source(&self) -> Option<&(dyn error::Error + 'static)> { match *self { DoubleError::EmptyVec => None, // Nedeni, temeldeki implemente hatası tipidir. // Dolaylı olarak `&error::Error` nitelik nesnesine cast edin(yayın). // Bu çalışacaktır çünkü temel tip zaten `Error` niteliğini implemente eder. DoubleError::Parse(ref e) => Some(e), } } } // `ParseIntError`dan `DoubleError`a dönüşümü implemente edin. // Bu otomatik olarak `?` ile çağrılacaktır. `ParseIntError` ise // `DoubleError` dönüştürülmelidir. impl From<ParseIntError> for DoubleError { fn from(err: ParseIntError) -> DoubleError { DoubleError::Parse(err) } } fn double_first(vec: Vec<&str>) -> Result<i32> { let first = vec.first().ok_or(DoubleError::EmptyVec)?; // Burada bir `DoubleError` oluşturmak için örtülü olarak `From`'un // `ParseIntError` implementesini kullanıyoruz (yukarıda tanımladığımız). let parsed = first.parse::<i32>()?; Ok(2 * parsed) } fn print(result: Result<i32>) { match result { Ok(n) => println!("The first doubled is {}", n), Err(e) => { println!("Error: {}", e); if let Some(source) = e.source() { println!(" Caused by: {}", source); } }, } } fn main() { let numbers = vec!["42", "93", "18"]; let empty = vec![]; let strings = vec!["tofu", "93", "18"]; print(double_first(numbers)); print(double_first(empty)); print(double_first(strings)); }
Bu, hataların ele alınması için biraz daha fazla standart ekler ve tüm uygulamalarda gerekli olmayabilir. Sizin için basmakalıpları halledebilecek kütüphaneler var.
Ayrıca bakın:
From::from
ve Enums
Result
s(Sonuçlar) Üzerine Yineleme
Bir Iter::map
işlemi başarısız olabilir, örneğin:
fn main() { let strings = vec!["tofu", "93", "18"]; let numbers: Vec<_> = strings .into_iter() .map(|s| s.parse::<i32>()) .collect(); println!("Results: {:?}", numbers); }
Bununla başa çıkmak için strateji adımlarına geçelim.
filter_map()
ile Başarısız(fail) Öğeleri Yok Saymak
filter_map
bir fonksiyon çağırır ve sonuçları None
(yok) olanları filtreler.
fn main() { let strings = vec!["tofu", "93", "18"]; let numbers: Vec<_> = strings .into_iter() .map(|s| s.parse::<i32>()) .filter_map(Result::ok) .collect(); println!("Results: {:?}", numbers); }
collect()
ile Tüm Başarısız İşlemler
Result
sonucu (Result<Vec<T>, E>
) gibi sonuç vektörüne dönüştürülebilen (Vec<Result<T, E>>
) olan FromIter
i implemente eder. Bir Result::Err
bulunduğunda, yineleme sona erecektir.
fn main() { let strings = vec!["tofu", "93", "18"]; let numbers: Result<Vec<_>, _> = strings .into_iter() .map(|s| s.parse::<i32>()) .collect(); println!("Results: {:?}", numbers); }
Bu teknik Option
ile de kullanılabilir.
partition()
ile Tüm Geçerli(Valid) Değerleri ve Hataları Toplayın
fn main() { let strings = vec!["tofu", "93", "18"]; let (numbers, errors): (Vec<_>, Vec<_>) = strings .into_iter() .map(|s| s.parse::<i32>()) .partition(Result::is_ok); println!("Numbers: {:?}", numbers); println!("Errors: {:?}", errors); }
Sonuçlara baktığınızda, her şeyin hala Result
bölümünde olduğunu fark edeceksiniz. Bunun için biraz daha standart şablona ihtiyaç var.
fn main() { let strings = vec!["tofu", "93", "18"]; let (numbers, errors): (Vec<_>, Vec<_>) = strings .into_iter() .map(|s| s.parse::<i32>()) .partition(Result::is_ok); let numbers: Vec<_> = numbers.into_iter().map(Result::unwrap).collect(); let errors: Vec<_> = errors.into_iter().map(Result::unwrap_err).collect(); println!("Numbers: {:?}", numbers); println!("Errors: {:?}", errors); }
Std kütüphanesi tipleri
std
kütüphanesi temel
ler üzerinde büyük ölçüde genişleyen birçok özel tip sağlar. Bunlardan bazıları:
- büyütülebilir
String
ler gibi:"hello world"
- büyütülebilir vector'ler:
[1, 2, 3]
- option tipleri:
Option<i32>
- hata yönetimi tipleri:
Result<i32, i32>
- bellekte heap(öbek) olarak yer ayrılan pointer'lar:
Box<i32>
Ayrıca bakın:
Box, stack and heap
All values in Rust are stack allocated by default. Values can be boxed
(allocated on the heap) by creating a Box<T>
. A box is a smart pointer to a
heap allocated value of type T
. When a box goes out of scope, its destructor
is called, the inner object is destroyed, and the memory on the heap is freed.
Boxed values can be dereferenced using the *
operator; this removes one layer
of indirection.
use std::mem; #[allow(dead_code)] #[derive(Debug, Clone, Copy)] struct Point { x: f64, y: f64, } // A Rectangle can be specified by where its top left and bottom right // corners are in space #[allow(dead_code)] struct Rectangle { top_left: Point, bottom_right: Point, } fn origin() -> Point { Point { x: 0.0, y: 0.0 } } fn boxed_origin() -> Box<Point> { // Allocate this point on the heap, and return a pointer to it Box::new(Point { x: 0.0, y: 0.0 }) } fn main() { // (all the type annotations are superfluous) // Stack allocated variables let point: Point = origin(); let rectangle: Rectangle = Rectangle { top_left: origin(), bottom_right: Point { x: 3.0, y: -4.0 } }; // Heap allocated rectangle let boxed_rectangle: Box<Rectangle> = Box::new(Rectangle { top_left: origin(), bottom_right: Point { x: 3.0, y: -4.0 }, }); // The output of functions can be boxed let boxed_point: Box<Point> = Box::new(origin()); // Double indirection let box_in_a_box: Box<Box<Point>> = Box::new(boxed_origin()); println!("Point occupies {} bytes on the stack", mem::size_of_val(&point)); println!("Rectangle occupies {} bytes on the stack", mem::size_of_val(&rectangle)); // box size == pointer size println!("Boxed point occupies {} bytes on the stack", mem::size_of_val(&boxed_point)); println!("Boxed rectangle occupies {} bytes on the stack", mem::size_of_val(&boxed_rectangle)); println!("Boxed box occupies {} bytes on the stack", mem::size_of_val(&box_in_a_box)); // Copy the data contained in `boxed_point` into `unboxed_point` let unboxed_point: Point = *boxed_point; println!("Unboxed point occupies {} bytes on the stack", mem::size_of_val(&unboxed_point)); }
Vectors
Vectors are re-sizable arrays. Like slices, their size is not known at compile time, but they can grow or shrink at any time. A vector is represented using 3 parameters:
- pointer to the data
- length
- capacity
The capacity indicates how much memory is reserved for the vector. The vector can grow as long as the length is smaller than the capacity. When this threshold needs to be surpassed, the vector is reallocated with a larger capacity.
fn main() { // Iterators can be collected into vectors let collected_iterator: Vec<i32> = (0..10).collect(); println!("Collected (0..10) into: {:?}", collected_iterator); // The `vec!` macro can be used to initialize a vector let mut xs = vec![1i32, 2, 3]; println!("Initial vector: {:?}", xs); // Insert new element at the end of the vector println!("Push 4 into the vector"); xs.push(4); println!("Vector: {:?}", xs); // Error! Immutable vectors can't grow collected_iterator.push(0); // FIXME ^ Comment out this line // The `len` method yields the number of elements currently stored in a vector println!("Vector length: {}", xs.len()); // Indexing is done using the square brackets (indexing starts at 0) println!("Second element: {}", xs[1]); // `pop` removes the last element from the vector and returns it println!("Pop last element: {:?}", xs.pop()); // Out of bounds indexing yields a panic println!("Fourth element: {}", xs[3]); // FIXME ^ Comment out this line // `Vector`s can be easily iterated over println!("Contents of xs:"); for x in xs.iter() { println!("> {}", x); } // A `Vector` can also be iterated over while the iteration // count is enumerated in a separate variable (`i`) for (i, x) in xs.iter().enumerate() { println!("In position {} we have value {}", i, x); } // Thanks to `iter_mut`, mutable `Vector`s can also be iterated // over in a way that allows modifying each value for x in xs.iter_mut() { *x *= 3; } println!("Updated vector: {:?}", xs); }
More Vec
methods can be found under the
std::vec module
Strings
There are two types of strings in Rust: String
and &str
.
A String
is stored as a vector of bytes (Vec<u8>
), but guaranteed to
always be a valid UTF-8 sequence. String
is heap allocated, growable and not
null terminated.
&str
is a slice (&[u8]
) that always points to a valid UTF-8 sequence, and
can be used to view into a String
, just like &[T]
is a view into Vec<T>
.
fn main() { // (all the type annotations are superfluous) // A reference to a string allocated in read only memory let pangram: &'static str = "the quick brown fox jumps over the lazy dog"; println!("Pangram: {}", pangram); // Iterate over words in reverse, no new string is allocated println!("Words in reverse"); for word in pangram.split_whitespace().rev() { println!("> {}", word); } // Copy chars into a vector, sort and remove duplicates let mut chars: Vec<char> = pangram.chars().collect(); chars.sort(); chars.dedup(); // Create an empty and growable `String` let mut string = String::new(); for c in chars { // Insert a char at the end of string string.push(c); // Insert a string at the end of string string.push_str(", "); } // The trimmed string is a slice to the original string, hence no new // allocation is performed let chars_to_trim: &[char] = &[' ', ',']; let trimmed_str: &str = string.trim_matches(chars_to_trim); println!("Used characters: {}", trimmed_str); // Heap allocate a string let alice = String::from("I like dogs"); // Allocate new memory and store the modified string there let bob: String = alice.replace("dog", "cat"); println!("Alice says: {}", alice); println!("Bob says: {}", bob); }
More str
/String
methods can be found under the
std::str and
std::string
modules
Literals and escapes
There are multiple ways to write string literals with special characters in them.
All result in a similar &str
so it's best to use the form that is the most
convenient to write. Similarly there are multiple ways to write byte string literals,
which all result in &[u8; N]
.
Generally special characters are escaped with a backslash character: \
.
This way you can add any character to your string, even unprintable ones
and ones that you don't know how to type. If you want a literal backslash,
escape it with another one: \\
String or character literal delimiters occuring within a literal must be escaped: "\""
, '\''
.
fn main() { // You can use escapes to write bytes by their hexadecimal values... let byte_escape = "I'm writing \x52\x75\x73\x74!"; println!("What are you doing\x3F (\\x3F means ?) {}", byte_escape); // ...or Unicode code points. let unicode_codepoint = "\u{211D}"; let character_name = "\"DOUBLE-STRUCK CAPITAL R\""; println!("Unicode character {} (U+211D) is called {}", unicode_codepoint, character_name ); let long_string = "String literals can span multiple lines. The linebreak and indentation here ->\ <- can be escaped too!"; println!("{}", long_string); }
Sometimes there are just too many characters that need to be escaped or it's just much more convenient to write a string out as-is. This is where raw string literals come into play.
fn main() { let raw_str = r"Escapes don't work here: \x3F \u{211D}"; println!("{}", raw_str); // If you need quotes in a raw string, add a pair of #s let quotes = r#"And then I said: "There is no escape!""#; println!("{}", quotes); // If you need "# in your string, just use more #s in the delimiter. // There is no limit for the number of #s you can use. let longer_delimiter = r###"A string with "# in it. And even "##!"###; println!("{}", longer_delimiter); }
Want a string that's not UTF-8? (Remember, str
and String
must be valid UTF-8).
Or maybe you want an array of bytes that's mostly text? Byte strings to the rescue!
use std::str; fn main() { // Note that this is not actually a `&str` let bytestring: &[u8; 21] = b"this is a byte string"; // Byte arrays don't have the `Display` trait, so printing them is a bit limited println!("A byte string: {:?}", bytestring); // Byte strings can have byte escapes... let escaped = b"\x52\x75\x73\x74 as bytes"; // ...but no unicode escapes // let escaped = b"\u{211D} is not allowed"; println!("Some escaped bytes: {:?}", escaped); // Raw byte strings work just like raw strings let raw_bytestring = br"\u{211D} is not escaped here"; println!("{:?}", raw_bytestring); // Converting a byte array to `str` can fail if let Ok(my_str) = str::from_utf8(raw_bytestring) { println!("And the same as text: '{}'", my_str); } let _quotes = br#"You can also use "fancier" formatting, \ like with normal raw strings"#; // Byte strings don't have to be UTF-8 let shift_jis = b"\x82\xe6\x82\xa8\x82\xb1\x82\xbb"; // "ようこそ" in SHIFT-JIS // But then they can't always be converted to `str` match str::from_utf8(shift_jis) { Ok(my_str) => println!("Conversion successful: '{}'", my_str), Err(e) => println!("Conversion failed: {:?}", e), }; }
For conversions between character encodings check out the encoding crate.
A more detailed listing of the ways to write string literals and escape characters is given in the 'Tokens' chapter of the Rust Reference.
Option
Sometimes it's desirable to catch the failure of some parts of a program
instead of calling panic!
; this can be accomplished using the Option
enum.
The Option<T>
enum has two variants:
None
, to indicate failure or lack of value, andSome(value)
, a tuple struct that wraps avalue
with typeT
.
// An integer division that doesn't `panic!` fn checked_division(dividend: i32, divisor: i32) -> Option<i32> { if divisor == 0 { // Failure is represented as the `None` variant None } else { // Result is wrapped in a `Some` variant Some(dividend / divisor) } } // This function handles a division that may not succeed fn try_division(dividend: i32, divisor: i32) { // `Option` values can be pattern matched, just like other enums match checked_division(dividend, divisor) { None => println!("{} / {} failed!", dividend, divisor), Some(quotient) => { println!("{} / {} = {}", dividend, divisor, quotient) }, } } fn main() { try_division(4, 2); try_division(1, 0); // Binding `None` to a variable needs to be type annotated let none: Option<i32> = None; let _equivalent_none = None::<i32>; let optional_float = Some(0f32); // Unwrapping a `Some` variant will extract the value wrapped. println!("{:?} unwraps to {:?}", optional_float, optional_float.unwrap()); // Unwrapping a `None` variant will `panic!` println!("{:?} unwraps to {:?}", none, none.unwrap()); }
Result
We've seen that the Option
enum can be used as a return value from functions
that may fail, where None
can be returned to indicate failure. However,
sometimes it is important to express why an operation failed. To do this we
have the Result
enum.
The Result<T, E>
enum has two variants:
Ok(value)
which indicates that the operation succeeded, and wraps thevalue
returned by the operation. (value
has typeT
)Err(why)
, which indicates that the operation failed, and wrapswhy
, which (hopefully) explains the cause of the failure. (why
has typeE
)
mod checked { // Mathematical "errors" we want to catch #[derive(Debug)] pub enum MathError { DivisionByZero, NonPositiveLogarithm, NegativeSquareRoot, } pub type MathResult = Result<f64, MathError>; pub fn div(x: f64, y: f64) -> MathResult { if y == 0.0 { // This operation would `fail`, instead let's return the reason of // the failure wrapped in `Err` Err(MathError::DivisionByZero) } else { // This operation is valid, return the result wrapped in `Ok` Ok(x / y) } } pub fn sqrt(x: f64) -> MathResult { if x < 0.0 { Err(MathError::NegativeSquareRoot) } else { Ok(x.sqrt()) } } pub fn ln(x: f64) -> MathResult { if x <= 0.0 { Err(MathError::NonPositiveLogarithm) } else { Ok(x.ln()) } } } // `op(x, y)` === `sqrt(ln(x / y))` fn op(x: f64, y: f64) -> f64 { // This is a three level match pyramid! match checked::div(x, y) { Err(why) => panic!("{:?}", why), Ok(ratio) => match checked::ln(ratio) { Err(why) => panic!("{:?}", why), Ok(ln) => match checked::sqrt(ln) { Err(why) => panic!("{:?}", why), Ok(sqrt) => sqrt, }, }, } } fn main() { // Will this fail? println!("{}", op(1.0, 10.0)); }
?
Chaining results using match can get pretty untidy; luckily, the ?
operator
can be used to make things pretty again. ?
is used at the end of an expression
returning a Result
, and is equivalent to a match expression, where the
Err(err)
branch expands to an early Err(From::from(err))
, and the Ok(ok)
branch expands to an ok
expression.
mod checked { #[derive(Debug)] enum MathError { DivisionByZero, NonPositiveLogarithm, NegativeSquareRoot, } type MathResult = Result<f64, MathError>; fn div(x: f64, y: f64) -> MathResult { if y == 0.0 { Err(MathError::DivisionByZero) } else { Ok(x / y) } } fn sqrt(x: f64) -> MathResult { if x < 0.0 { Err(MathError::NegativeSquareRoot) } else { Ok(x.sqrt()) } } fn ln(x: f64) -> MathResult { if x <= 0.0 { Err(MathError::NonPositiveLogarithm) } else { Ok(x.ln()) } } // Intermediate function fn op_(x: f64, y: f64) -> MathResult { // if `div` "fails", then `DivisionByZero` will be `return`ed let ratio = div(x, y)?; // if `ln` "fails", then `NonPositiveLogarithm` will be `return`ed let ln = ln(ratio)?; sqrt(ln) } pub fn op(x: f64, y: f64) { match op_(x, y) { Err(why) => panic!(match why { MathError::NonPositiveLogarithm => "logarithm of non-positive number", MathError::DivisionByZero => "division by zero", MathError::NegativeSquareRoot => "square root of negative number", }), Ok(value) => println!("{}", value), } } } fn main() { checked::op(1.0, 10.0); }
Be sure to check the documentation,
as there are many methods to map/compose Result
.
panic!
The panic!
macro can be used to generate a panic and start unwinding
its stack. While unwinding, the runtime will take care of freeing all the
resources owned by the thread by calling the destructor of all its objects.
Since we are dealing with programs with only one thread, panic!
will cause the
program to report the panic message and exit.
// Re-implementation of integer division (/) fn division(dividend: i32, divisor: i32) -> i32 { if divisor == 0 { // Division by zero triggers a panic panic!("division by zero"); } else { dividend / divisor } } // The `main` task fn main() { // Heap allocated integer let _x = Box::new(0i32); // This operation will trigger a task failure division(3, 0); println!("This point won't be reached!"); // `_x` should get destroyed at this point }
Let's check that panic!
doesn't leak memory.
$ rustc panic.rs && valgrind ./panic
==4401== Memcheck, a memory error detector
==4401== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==4401== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for copyright info
==4401== Command: ./panic
==4401==
thread '<main>' panicked at 'division by zero', panic.rs:5
==4401==
==4401== HEAP SUMMARY:
==4401== in use at exit: 0 bytes in 0 blocks
==4401== total heap usage: 18 allocs, 18 frees, 1,648 bytes allocated
==4401==
==4401== All heap blocks were freed -- no leaks are possible
==4401==
==4401== For counts of detected and suppressed errors, rerun with: -v
==4401== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
HashMap
Where vectors store values by an integer index, HashMap
s store values by key.
HashMap
keys can be booleans, integers, strings,
or any other type that implements the Eq
and Hash
traits.
More on this in the next section.
Like vectors, HashMap
s are growable, but HashMaps can also shrink themselves
when they have excess space.
You can create a HashMap with a certain starting capacity using
HashMap::with_capacity(uint)
, or use HashMap::new()
to get a HashMap
with a default initial capacity (recommended).
use std::collections::HashMap; fn call(number: &str) -> &str { match number { "798-1364" => "We're sorry, the call cannot be completed as dialed. Please hang up and try again.", "645-7689" => "Hello, this is Mr. Awesome's Pizza. My name is Fred. What can I get for you today?", _ => "Hi! Who is this again?" } } fn main() { let mut contacts = HashMap::new(); contacts.insert("Daniel", "798-1364"); contacts.insert("Ashley", "645-7689"); contacts.insert("Katie", "435-8291"); contacts.insert("Robert", "956-1745"); // Takes a reference and returns Option<&V> match contacts.get(&"Daniel") { Some(&number) => println!("Calling Daniel: {}", call(number)), _ => println!("Don't have Daniel's number."), } // `HashMap::insert()` returns `None` // if the inserted value is new, `Some(value)` otherwise contacts.insert("Daniel", "164-6743"); match contacts.get(&"Ashley") { Some(&number) => println!("Calling Ashley: {}", call(number)), _ => println!("Don't have Ashley's number."), } contacts.remove(&"Ashley"); // `HashMap::iter()` returns an iterator that yields // (&'a key, &'a value) pairs in arbitrary order. for (contact, &number) in contacts.iter() { println!("Calling {}: {}", contact, call(number)); } }
For more information on how hashing and hash maps (sometimes called hash tables) work, have a look at Hash Table Wikipedia
Alternate/custom key types
Any type that implements the Eq
and Hash
traits can be a key in HashMap
.
This includes:
bool
(though not very useful since there is only two possible keys)int
,uint
, and all variations thereofString
and&str
(protip: you can have aHashMap
keyed byString
and call.get()
with an&str
)
Note that f32
and f64
do not implement Hash
,
likely because floating-point precision errors
would make using them as hashmap keys horribly error-prone.
All collection classes implement Eq
and Hash
if their contained type also respectively implements Eq
and Hash
.
For example, Vec<T>
will implement Hash
if T
implements Hash
.
You can easily implement Eq
and Hash
for a custom type with just one line:
#[derive(PartialEq, Eq, Hash)]
The compiler will do the rest. If you want more control over the details,
you can implement Eq
and/or Hash
yourself.
This guide will not cover the specifics of implementing Hash
.
To play around with using a struct
in HashMap
,
let's try making a very simple user logon system:
use std::collections::HashMap; // Eq requires that you derive PartialEq on the type. #[derive(PartialEq, Eq, Hash)] struct Account<'a>{ username: &'a str, password: &'a str, } struct AccountInfo<'a>{ name: &'a str, email: &'a str, } type Accounts<'a> = HashMap<Account<'a>, AccountInfo<'a>>; fn try_logon<'a>(accounts: &Accounts<'a>, username: &'a str, password: &'a str){ println!("Username: {}", username); println!("Password: {}", password); println!("Attempting logon..."); let logon = Account { username, password, }; match accounts.get(&logon) { Some(account_info) => { println!("Successful logon!"); println!("Name: {}", account_info.name); println!("Email: {}", account_info.email); }, _ => println!("Login failed!"), } } fn main(){ let mut accounts: Accounts = HashMap::new(); let account = Account { username: "j.everyman", password: "password123", }; let account_info = AccountInfo { name: "John Everyman", email: "j.everyman@email.com", }; accounts.insert(account, account_info); try_logon(&accounts, "j.everyman", "psasword123"); try_logon(&accounts, "j.everyman", "password123"); }
HashSet
Consider a HashSet
as a HashMap
where we just care about the keys (
HashSet<T>
is, in actuality, just a wrapper around HashMap<T, ()>
).
"What's the point of that?" you ask. "I could just store the keys in a Vec
."
A HashSet
's unique feature is that
it is guaranteed to not have duplicate elements.
That's the contract that any set collection fulfills.
HashSet
is just one implementation. (see also: BTreeSet
)
If you insert a value that is already present in the HashSet
,
(i.e. the new value is equal to the existing and they both have the same hash),
then the new value will replace the old.
This is great for when you never want more than one of something, or when you want to know if you've already got something.
But sets can do more than that.
Sets have 4 primary operations (all of the following calls return an iterator):
-
union
: get all the unique elements in both sets. -
difference
: get all the elements that are in the first set but not the second. -
intersection
: get all the elements that are only in both sets. -
symmetric_difference
: get all the elements that are in one set or the other, but not both.
Try all of these in the following example:
use std::collections::HashSet; fn main() { let mut a: HashSet<i32> = vec![1i32, 2, 3].into_iter().collect(); let mut b: HashSet<i32> = vec![2i32, 3, 4].into_iter().collect(); assert!(a.insert(4)); assert!(a.contains(&4)); // `HashSet::insert()` returns false if // there was a value already present. assert!(b.insert(4), "Value 4 is already in set B!"); // FIXME ^ Comment out this line b.insert(5); // If a collection's element type implements `Debug`, // then the collection implements `Debug`. // It usually prints its elements in the format `[elem1, elem2, ...]` println!("A: {:?}", a); println!("B: {:?}", b); // Print [1, 2, 3, 4, 5] in arbitrary order println!("Union: {:?}", a.union(&b).collect::<Vec<&i32>>()); // This should print [1] println!("Difference: {:?}", a.difference(&b).collect::<Vec<&i32>>()); // Print [2, 3, 4] in arbitrary order. println!("Intersection: {:?}", a.intersection(&b).collect::<Vec<&i32>>()); // Print [1, 5] println!("Symmetric Difference: {:?}", a.symmetric_difference(&b).collect::<Vec<&i32>>()); }
(Examples are adapted from the documentation.)
Rc
When multiple ownership is needed, Rc
(Reference Counting) can be used. Rc
keeps track of the number of the references which means the number of owners of the value wrapped inside an Rc
.
Reference count of an Rc
increases by 1 whenever an Rc
is cloned, and decreases by 1 whenever one cloned Rc
is dropped out of the scope. When an Rc
's reference count becomes zero, which means there are no owners remained, both the Rc
and the value are all dropped.
Cloning an Rc
never performs a deep copy. Cloning creates just another pointer to the wrapped value, and increments the count.
use std::rc::Rc; fn main() { let rc_examples = "Rc examples".to_string(); { println!("--- rc_a is created ---"); let rc_a: Rc<String> = Rc::new(rc_examples); println!("Reference Count of rc_a: {}", Rc::strong_count(&rc_a)); { println!("--- rc_a is cloned to rc_b ---"); let rc_b: Rc<String> = Rc::clone(&rc_a); println!("Reference Count of rc_b: {}", Rc::strong_count(&rc_b)); println!("Reference Count of rc_a: {}", Rc::strong_count(&rc_a)); // Two `Rc`s are equal if their inner values are equal println!("rc_a and rc_b are equal: {}", rc_a.eq(&rc_b)); // We can use methods of a value directly println!("Length of the value inside rc_a: {}", rc_a.len()); println!("Value of rc_b: {}", rc_b); println!("--- rc_b is dropped out of scope ---"); } println!("Reference Count of rc_a: {}", Rc::strong_count(&rc_a)); println!("--- rc_a is dropped out of scope ---"); } // Error! `rc_examples` already moved into `rc_a` // And when `rc_a` is dropped, `rc_examples` is dropped together // println!("rc_examples: {}", rc_examples); // TODO ^ Try uncommenting this line }
See also:
std::rc and std::sync::arc.
Arc
When shared ownership between threads is needed, Arc
(Atomic Reference Counted) can be used. This struct, via the Clone
implementation can create a reference pointer for the location of a value in the memory heap while increasing the reference counter. As it shares ownership between threads, when the last reference pointer to a value is out of scope, the variable is dropped.
fn main() { use std::sync::Arc; use std::thread; // This variable declaration is where it's value is specified. let apple = Arc::new("the same apple"); for _ in 0..10 { // Here there is no value specification as it is a pointer to a reference // in the memory heap. let apple = Arc::clone(&apple); thread::spawn(move || { // As Arc was used, threads can be spawned using the value allocated // in the Arc variable pointer's location. println!("{:?}", apple); }); } }
Std diğer
Std kütüphanesinin sağladığı desteklenen diğer birçok tipler:
- Thread'ler(İplikler)
- Channel'lar(Kanallar)
- File I/O(Dosya Girdi Çıktı)
Bunlartemellerin sağladıklarını genişletirler.
Ayrıca bakın:
temeller ve std kütüphanesi İngilizce dokümantasyon
Threads
Rust provides a mechanism for spawning native OS threads via the spawn
function, the argument of this function is a moving closure.
use std::thread; const NTHREADS: u32 = 10; // This is the `main` thread fn main() { // Make a vector to hold the children which are spawned. let mut children = vec![]; for i in 0..NTHREADS { // Spin up another thread children.push(thread::spawn(move || { println!("this is thread number {}", i); })); } for child in children { // Wait for the thread to finish. Returns a result. let _ = child.join(); } }
These threads will be scheduled by the OS.
Testcase: map-reduce
Rust makes it very easy to parallelise data processing, without many of the headaches traditionally associated with such an attempt.
The standard library provides great threading primitives out of the box. These, combined with Rust's concept of Ownership and aliasing rules, automatically prevent data races.
The aliasing rules (one writable reference XOR many readable references) automatically prevent
you from manipulating state that is visible to other threads. (Where synchronisation is needed,
there are synchronisation
primitives like Mutex
es or Channel
s.)
In this example, we will calculate the sum of all digits in a block of numbers. We will do this by parcelling out chunks of the block into different threads. Each thread will sum its tiny block of digits, and subsequently we will sum the intermediate sums produced by each thread.
Note that, although we're passing references across thread boundaries, Rust understands that we're
only passing read-only references, and that thus no unsafety or data races can occur. Because
we're move
-ing the data segments into the thread, Rust will also ensure the data is kept alive
until the threads exit, so no dangling pointers occur.
use std::thread; // This is the `main` thread fn main() { // This is our data to process. // We will calculate the sum of all digits via a threaded map-reduce algorithm. // Each whitespace separated chunk will be handled in a different thread. // // TODO: see what happens to the output if you insert spaces! let data = "86967897737416471853297327050364959 11861322575564723963297542624962850 70856234701860851907960690014725639 38397966707106094172783238747669219 52380795257888236525459303330302837 58495327135744041048897885734297812 69920216438980873548808413720956532 16278424637452589860345374828574668"; // Make a vector to hold the child-threads which we will spawn. let mut children = vec![]; /************************************************************************* * "Map" phase * * Divide our data into segments, and apply initial processing ************************************************************************/ // split our data into segments for individual calculation // each chunk will be a reference (&str) into the actual data let chunked_data = data.split_whitespace(); // Iterate over the data segments. // .enumerate() adds the current loop index to whatever is iterated // the resulting tuple "(index, element)" is then immediately // "destructured" into two variables, "i" and "data_segment" with a // "destructuring assignment" for (i, data_segment) in chunked_data.enumerate() { println!("data segment {} is \"{}\"", i, data_segment); // Process each data segment in a separate thread // // spawn() returns a handle to the new thread, // which we MUST keep to access the returned value // // 'move || -> u32' is syntax for a closure that: // * takes no arguments ('||') // * takes ownership of its captured variables ('move') and // * returns an unsigned 32-bit integer ('-> u32') // // Rust is smart enough to infer the '-> u32' from // the closure itself so we could have left that out. // // TODO: try removing the 'move' and see what happens children.push(thread::spawn(move || -> u32 { // Calculate the intermediate sum of this segment: let result = data_segment // iterate over the characters of our segment.. .chars() // .. convert text-characters to their number value.. .map(|c| c.to_digit(10).expect("should be a digit")) // .. and sum the resulting iterator of numbers .sum(); // println! locks stdout, so no text-interleaving occurs println!("processed segment {}, result={}", i, result); // "return" not needed, because Rust is an "expression language", the // last evaluated expression in each block is automatically its value. result })); } /************************************************************************* * "Reduce" phase * * Collect our intermediate results, and combine them into a final result ************************************************************************/ // collect each thread's intermediate results into a new Vec let mut intermediate_sums = vec![]; for child in children { // collect each child thread's return-value let intermediate_sum = child.join().unwrap(); intermediate_sums.push(intermediate_sum); } // combine all intermediate sums into a single final sum. // // we use the "turbofish" ::<> to provide sum() with a type hint. // // TODO: try without the turbofish, by instead explicitly // specifying the type of final_result let final_result = intermediate_sums.iter().sum::<u32>(); println!("Final sum result: {}", final_result); }
Assignments
It is not wise to let our number of threads depend on user inputted data. What if the user decides to insert a lot of spaces? Do we really want to spawn 2,000 threads? Modify the program so that the data is always chunked into a limited number of chunks, defined by a static constant at the beginning of the program.
See also:
- Threads
- vectors and iterators
- closures, move semantics and
move
closures - destructuring assignments
- turbofish notation to help type inference
- unwrap vs. expect
- enumerate
Channels
Rust provides asynchronous channels
for communication between threads. Channels
allow a unidirectional flow of information between two end-points: the
Sender
and the Receiver
.
use std::sync::mpsc::{Sender, Receiver}; use std::sync::mpsc; use std::thread; static NTHREADS: i32 = 3; fn main() { // Channels have two endpoints: the `Sender<T>` and the `Receiver<T>`, // where `T` is the type of the message to be transferred // (type annotation is superfluous) let (tx, rx): (Sender<i32>, Receiver<i32>) = mpsc::channel(); let mut children = Vec::new(); for id in 0..NTHREADS { // The sender endpoint can be copied let thread_tx = tx.clone(); // Each thread will send its id via the channel let child = thread::spawn(move || { // The thread takes ownership over `thread_tx` // Each thread queues a message in the channel thread_tx.send(id).unwrap(); // Sending is a non-blocking operation, the thread will continue // immediately after sending its message println!("thread {} finished", id); }); children.push(child); } // Here, all the messages are collected let mut ids = Vec::with_capacity(NTHREADS as usize); for _ in 0..NTHREADS { // The `recv` method picks a message from the channel // `recv` will block the current thread if there are no messages available ids.push(rx.recv()); } // Wait for the threads to complete any remaining work for child in children { child.join().expect("oops! the child thread panicked"); } // Show the order in which the messages were sent println!("{:?}", ids); }
Path
The Path
struct represents file paths in the underlying filesystem. There are
two flavors of Path
: posix::Path
, for UNIX-like systems, and
windows::Path
, for Windows. The prelude exports the appropriate
platform-specific Path
variant.
A Path
can be created from an OsStr
, and provides several methods to get
information from the file/directory the path points to.
Note that a Path
is not internally represented as an UTF-8 string, but
instead is stored as a vector of bytes (Vec<u8>
). Therefore, converting a
Path
to a &str
is not free and may fail (an Option
is returned).
use std::path::Path; fn main() { // Create a `Path` from an `&'static str` let path = Path::new("."); // The `display` method returns a `Show`able structure let _display = path.display(); // `join` merges a path with a byte container using the OS specific // separator, and returns the new path let new_path = path.join("a").join("b"); // Convert the path into a string slice match new_path.to_str() { None => panic!("new path is not a valid UTF-8 sequence"), Some(s) => println!("new path is {}", s), } }
Be sure to check at other Path
methods (posix::Path
or windows::Path
) and
the Metadata
struct.
See also:
File I/O
The File
struct represents a file that has been opened (it wraps a file
descriptor), and gives read and/or write access to the underlying file.
Since many things can go wrong when doing file I/O, all the File
methods
return the io::Result<T>
type, which is an alias for Result<T, io::Error>
.
This makes the failure of all I/O operations explicit. Thanks to this, the programmer can see all the failure paths, and is encouraged to handle them in a proactive manner.
open
The open
static method can be used to open a file in read-only mode.
A File
owns a resource, the file descriptor and takes care of closing the
file when it is drop
ed.
use std::fs::File;
use std::io::prelude::*;
use std::path::Path;
fn main() {
// Create a path to the desired file
let path = Path::new("hello.txt");
let display = path.display();
// Open the path in read-only mode, returns `io::Result<File>`
let mut file = match File::open(&path) {
Err(why) => panic!("couldn't open {}: {}", display, why),
Ok(file) => file,
};
// Read the file contents into a string, returns `io::Result<usize>`
let mut s = String::new();
match file.read_to_string(&mut s) {
Err(why) => panic!("couldn't read {}: {}", display, why),
Ok(_) => print!("{} contains:\n{}", display, s),
}
// `file` goes out of scope, and the "hello.txt" file gets closed
}
Here's the expected successful output:
$ echo "Hello World!" > hello.txt
$ rustc open.rs && ./open
hello.txt contains:
Hello World!
(You are encouraged to test the previous example under different failure
conditions: hello.txt
doesn't exist, or hello.txt
is not readable,
etc.)
create
The create
static method opens a file in write-only mode. If the file
already existed, the old content is destroyed. Otherwise, a new file is
created.
static LOREM_IPSUM: &str =
"Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
";
use std::fs::File;
use std::io::prelude::*;
use std::path::Path;
fn main() {
let path = Path::new("lorem_ipsum.txt");
let display = path.display();
// Open a file in write-only mode, returns `io::Result<File>`
let mut file = match File::create(&path) {
Err(why) => panic!("couldn't create {}: {}", display, why),
Ok(file) => file,
};
// Write the `LOREM_IPSUM` string to `file`, returns `io::Result<()>`
match file.write_all(LOREM_IPSUM.as_bytes()) {
Err(why) => panic!("couldn't write to {}: {}", display, why),
Ok(_) => println!("successfully wrote to {}", display),
}
}
Here's the expected successful output:
$ rustc create.rs && ./create
successfully wrote to lorem_ipsum.txt
$ cat lorem_ipsum.txt
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
(As in the previous example, you are encouraged to test this example under failure conditions.)
There is OpenOptions
struct that can be used to configure how a file is opened.
read_lines
The method lines()
returns an iterator over the lines
of a file.
File::open
expects a generic, AsRef<Path>
. That's what
read_lines()
expects as input.
use std::fs::File; use std::io::{self, BufRead}; use std::path::Path; fn main() { // File hosts must exist in current path before this produces output if let Ok(lines) = read_lines("./hosts") { // Consumes the iterator, returns an (Optional) String for line in lines { if let Ok(ip) = line { println!("{}", ip); } } } } // The output is wrapped in a Result to allow matching on errors // Returns an Iterator to the Reader of the lines of the file. fn read_lines<P>(filename: P) -> io::Result<io::Lines<io::BufReader<File>>> where P: AsRef<Path>, { let file = File::open(filename)?; Ok(io::BufReader::new(file).lines()) }
Running this program simply prints the lines individually.
$ echo -e "127.0.0.1\n192.168.0.1\n" > hosts
$ rustc read_lines.rs && ./read_lines
127.0.0.1
192.168.0.1
This process is more efficient than creating a String
in memory
especially working with larger files.
Child processes
The process::Output
struct represents the output of a finished child process,
and the process::Command
struct is a process builder.
use std::process::Command;
fn main() {
let output = Command::new("rustc")
.arg("--version")
.output().unwrap_or_else(|e| {
panic!("failed to execute process: {}", e)
});
if output.status.success() {
let s = String::from_utf8_lossy(&output.stdout);
print!("rustc succeeded and stdout was:\n{}", s);
} else {
let s = String::from_utf8_lossy(&output.stderr);
print!("rustc failed and stderr was:\n{}", s);
}
}
(You are encouraged to try the previous example with an incorrect flag passed
to rustc
)
Pipes
The std::Child
struct represents a running child process, and exposes the
stdin
, stdout
and stderr
handles for interaction with the underlying
process via pipes.
use std::io::prelude::*;
use std::process::{Command, Stdio};
static PANGRAM: &'static str =
"the quick brown fox jumped over the lazy dog\n";
fn main() {
// Spawn the `wc` command
let process = match Command::new("wc")
.stdin(Stdio::piped())
.stdout(Stdio::piped())
.spawn() {
Err(why) => panic!("couldn't spawn wc: {}", why),
Ok(process) => process,
};
// Write a string to the `stdin` of `wc`.
//
// `stdin` has type `Option<ChildStdin>`, but since we know this instance
// must have one, we can directly `unwrap` it.
match process.stdin.unwrap().write_all(PANGRAM.as_bytes()) {
Err(why) => panic!("couldn't write to wc stdin: {}", why),
Ok(_) => println!("sent pangram to wc"),
}
// Because `stdin` does not live after the above calls, it is `drop`ed,
// and the pipe is closed.
//
// This is very important, otherwise `wc` wouldn't start processing the
// input we just sent.
// The `stdout` field also has type `Option<ChildStdout>` so must be unwrapped.
let mut s = String::new();
match process.stdout.unwrap().read_to_string(&mut s) {
Err(why) => panic!("couldn't read wc stdout: {}", why),
Ok(_) => print!("wc responded with:\n{}", s),
}
}
Wait
If you'd like to wait for a process::Child
to finish, you must call
Child::wait
, which will return a process::ExitStatus
.
use std::process::Command;
fn main() {
let mut child = Command::new("sleep").arg("5").spawn().unwrap();
let _result = child.wait().unwrap();
println!("reached end of main");
}
$ rustc wait.rs && ./wait
# `wait` keeps running for 5 seconds until the `sleep 5` command finishes
reached end of main
Filesystem Operations
The std::fs
module contains several functions that deal with the filesystem.
use std::fs;
use std::fs::{File, OpenOptions};
use std::io;
use std::io::prelude::*;
use std::os::unix;
use std::path::Path;
// A simple implementation of `% cat path`
fn cat(path: &Path) -> io::Result<String> {
let mut f = File::open(path)?;
let mut s = String::new();
match f.read_to_string(&mut s) {
Ok(_) => Ok(s),
Err(e) => Err(e),
}
}
// A simple implementation of `% echo s > path`
fn echo(s: &str, path: &Path) -> io::Result<()> {
let mut f = File::create(path)?;
f.write_all(s.as_bytes())
}
// A simple implementation of `% touch path` (ignores existing files)
fn touch(path: &Path) -> io::Result<()> {
match OpenOptions::new().create(true).write(true).open(path) {
Ok(_) => Ok(()),
Err(e) => Err(e),
}
}
fn main() {
println!("`mkdir a`");
// Create a directory, returns `io::Result<()>`
match fs::create_dir("a") {
Err(why) => println!("! {:?}", why.kind()),
Ok(_) => {},
}
println!("`echo hello > a/b.txt`");
// The previous match can be simplified using the `unwrap_or_else` method
echo("hello", &Path::new("a/b.txt")).unwrap_or_else(|why| {
println!("! {:?}", why.kind());
});
println!("`mkdir -p a/c/d`");
// Recursively create a directory, returns `io::Result<()>`
fs::create_dir_all("a/c/d").unwrap_or_else(|why| {
println!("! {:?}", why.kind());
});
println!("`touch a/c/e.txt`");
touch(&Path::new("a/c/e.txt")).unwrap_or_else(|why| {
println!("! {:?}", why.kind());
});
println!("`ln -s ../b.txt a/c/b.txt`");
// Create a symbolic link, returns `io::Result<()>`
if cfg!(target_family = "unix") {
unix::fs::symlink("../b.txt", "a/c/b.txt").unwrap_or_else(|why| {
println!("! {:?}", why.kind());
});
}
println!("`cat a/c/b.txt`");
match cat(&Path::new("a/c/b.txt")) {
Err(why) => println!("! {:?}", why.kind()),
Ok(s) => println!("> {}", s),
}
println!("`ls a`");
// Read the contents of a directory, returns `io::Result<Vec<Path>>`
match fs::read_dir("a") {
Err(why) => println!("! {:?}", why.kind()),
Ok(paths) => for path in paths {
println!("> {:?}", path.unwrap().path());
},
}
println!("`rm a/c/e.txt`");
// Remove a file, returns `io::Result<()>`
fs::remove_file("a/c/e.txt").unwrap_or_else(|why| {
println!("! {:?}", why.kind());
});
println!("`rmdir a/c/d`");
// Remove an empty directory, returns `io::Result<()>`
fs::remove_dir("a/c/d").unwrap_or_else(|why| {
println!("! {:?}", why.kind());
});
}
Here's the expected successful output:
$ rustc fs.rs && ./fs
`mkdir a`
`echo hello > a/b.txt`
`mkdir -p a/c/d`
`touch a/c/e.txt`
`ln -s ../b.txt a/c/b.txt`
`cat a/c/b.txt`
> hello
`ls a`
> "a/b.txt"
> "a/c"
`rm a/c/e.txt`
`rmdir a/c/d`
And the final state of the a
directory is:
$ tree a
a
|-- b.txt
`-- c
`-- b.txt -> ../b.txt
1 directory, 2 files
An alternative way to define the function cat
is with ?
notation:
fn cat(path: &Path) -> io::Result<String> {
let mut f = File::open(path)?;
let mut s = String::new();
f.read_to_string(&mut s)?;
Ok(s)
}
See also:
Program arguments
Standard Library
The command line arguments can be accessed using std::env::args
, which
returns an iterator that yields a String
for each argument:
use std::env; fn main() { let args: Vec<String> = env::args().collect(); // The first argument is the path that was used to call the program. println!("My path is {}.", args[0]); // The rest of the arguments are the passed command line parameters. // Call the program like this: // $ ./args arg1 arg2 println!("I got {:?} arguments: {:?}.", args.len() - 1, &args[1..]); }
$ ./args 1 2 3
My path is ./args.
I got 3 arguments: ["1", "2", "3"].
Crates
Alternatively, there are numerous crates that can provide extra functionality
when creating command-line applications. The Rust Cookbook exhibits best
practices on how to use one of the more popular command line argument crates,
clap
.
Argument parsing
Matching can be used to parse simple arguments:
use std::env; fn increase(number: i32) { println!("{}", number + 1); } fn decrease(number: i32) { println!("{}", number - 1); } fn help() { println!("usage: match_args <string> Check whether given string is the answer. match_args {{increase|decrease}} <integer> Increase or decrease given integer by one."); } fn main() { let args: Vec<String> = env::args().collect(); match args.len() { // no arguments passed 1 => { println!("My name is 'match_args'. Try passing some arguments!"); }, // one argument passed 2 => { match args[1].parse() { Ok(42) => println!("This is the answer!"), _ => println!("This is not the answer."), } }, // one command and one argument passed 3 => { let cmd = &args[1]; let num = &args[2]; // parse the number let number: i32 = match num.parse() { Ok(n) => { n }, Err(_) => { eprintln!("error: second argument not an integer"); help(); return; }, }; // parse the command match &cmd[..] { "increase" => increase(number), "decrease" => decrease(number), _ => { eprintln!("error: invalid command"); help(); }, } }, // all the other cases _ => { // show a help message help(); } } }
$ ./match_args Rust
This is not the answer.
$ ./match_args 42
This is the answer!
$ ./match_args do something
error: second argument not an integer
usage:
match_args <string>
Check whether given string is the answer.
match_args {increase|decrease} <integer>
Increase or decrease given integer by one.
$ ./match_args do 42
error: invalid command
usage:
match_args <string>
Check whether given string is the answer.
match_args {increase|decrease} <integer>
Increase or decrease given integer by one.
$ ./match_args increase 42
43
Foreign Function Interface
Rust provides a Foreign Function Interface (FFI) to C libraries. Foreign
functions must be declared inside an extern
block annotated with a #[link]
attribute containing the name of the foreign library.
use std::fmt;
// this extern block links to the libm library
#[link(name = "m")]
extern {
// this is a foreign function
// that computes the square root of a single precision complex number
fn csqrtf(z: Complex) -> Complex;
fn ccosf(z: Complex) -> Complex;
}
// Since calling foreign functions is considered unsafe,
// it's common to write safe wrappers around them.
fn cos(z: Complex) -> Complex {
unsafe { ccosf(z) }
}
fn main() {
// z = -1 + 0i
let z = Complex { re: -1., im: 0. };
// calling a foreign function is an unsafe operation
let z_sqrt = unsafe { csqrtf(z) };
println!("the square root of {:?} is {:?}", z, z_sqrt);
// calling safe API wrapped around unsafe operation
println!("cos({:?}) = {:?}", z, cos(z));
}
// Minimal implementation of single precision complex numbers
#[repr(C)]
#[derive(Clone, Copy)]
struct Complex {
re: f32,
im: f32,
}
impl fmt::Debug for Complex {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.im < 0. {
write!(f, "{}-{}i", self.re, -self.im)
} else {
write!(f, "{}+{}i", self.re, self.im)
}
}
}
Deneme(Test)
Rust doğruluğu çok önemseyen bir programlama dilidir ve dil kendi içinde yazılım testleri desteği içerir.
Testler üç şekildedir:
- Unit(Birim) testi.
- Doc(Dokümanstasyon) testi.
- Integration(Entegrasyon) testi.
Aynı zamanda Rust özelleştirilmiş eklemeli bağımsızlıkları da destekler:
Ayrıca bakınız
- İngilizce Rust kitabı ; bölüm testlerinde
- İngilizce Rust dokümanı ; dokümantasyon testlerinde
Unit testing
Tests are Rust functions that verify that the non-test code is functioning in the expected manner. The bodies of test functions typically perform some setup, run the code we want to test, then assert whether the results are what we expect.
Most unit tests go into a tests
mod with the #[cfg(test)]
attribute.
Test functions are marked with the #[test]
attribute.
Tests fail when something in the test function panics. There are some helper macros:
assert!(expression)
- panics if expression evaluates tofalse
.assert_eq!(left, right)
andassert_ne!(left, right)
- testing left and right expressions for equality and inequality respectively.
pub fn add(a: i32, b: i32) -> i32 {
a + b
}
// This is a really bad adding function, its purpose is to fail in this
// example.
#[allow(dead_code)]
fn bad_add(a: i32, b: i32) -> i32 {
a - b
}
#[cfg(test)]
mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
#[test]
fn test_add() {
assert_eq!(add(1, 2), 3);
}
#[test]
fn test_bad_add() {
// This assert would fire and test will fail.
// Please note, that private functions can be tested too!
assert_eq!(bad_add(1, 2), 3);
}
}
Tests can be run with cargo test
.
$ cargo test
running 2 tests
test tests::test_bad_add ... FAILED
test tests::test_add ... ok
failures:
---- tests::test_bad_add stdout ----
thread 'tests::test_bad_add' panicked at 'assertion failed: `(left == right)`
left: `-1`,
right: `3`', src/lib.rs:21:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.
failures:
tests::test_bad_add
test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
Tests and ?
None of the previous unit test examples had a return type. But in Rust 2018,
your unit tests can return Result<()>
, which lets you use ?
in them! This
can make them much more concise.
fn sqrt(number: f64) -> Result<f64, String> { if number >= 0.0 { Ok(number.powf(0.5)) } else { Err("negative floats don't have square roots".to_owned()) } } #[cfg(test)] mod tests { use super::*; #[test] fn test_sqrt() -> Result<(), String> { let x = 4.0; assert_eq!(sqrt(x)?.powf(2.0), x); Ok(()) } }
See "The Edition Guide" for more details.
Testing panics
To check functions that should panic under certain circumstances, use attribute
#[should_panic]
. This attribute accepts optional parameter expected =
with
the text of the panic message. If your function can panic in multiple ways, it helps
make sure your test is testing the correct panic.
pub fn divide_non_zero_result(a: u32, b: u32) -> u32 {
if b == 0 {
panic!("Divide-by-zero error");
} else if a < b {
panic!("Divide result is zero");
}
a / b
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_divide() {
assert_eq!(divide_non_zero_result(10, 2), 5);
}
#[test]
#[should_panic]
fn test_any_panic() {
divide_non_zero_result(1, 0);
}
#[test]
#[should_panic(expected = "Divide result is zero")]
fn test_specific_panic() {
divide_non_zero_result(1, 10);
}
}
Running these tests gives us:
$ cargo test
running 3 tests
test tests::test_any_panic ... ok
test tests::test_divide ... ok
test tests::test_specific_panic ... ok
test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Doc-tests tmp-test-should-panic
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Running specific tests
To run specific tests one may specify the test name to cargo test
command.
$ cargo test test_any_panic
running 1 test
test tests::test_any_panic ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 2 filtered out
Doc-tests tmp-test-should-panic
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
To run multiple tests one may specify part of a test name that matches all the tests that should be run.
$ cargo test panic
running 2 tests
test tests::test_any_panic ... ok
test tests::test_specific_panic ... ok
test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 1 filtered out
Doc-tests tmp-test-should-panic
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Ignoring tests
Tests can be marked with the #[ignore]
attribute to exclude some tests. Or to run
them with command cargo test -- --ignored
#![allow(unused)] fn main() { pub fn add(a: i32, b: i32) -> i32 { a + b } #[cfg(test)] mod tests { use super::*; #[test] fn test_add() { assert_eq!(add(2, 2), 4); } #[test] fn test_add_hundred() { assert_eq!(add(100, 2), 102); assert_eq!(add(2, 100), 102); } #[test] #[ignore] fn ignored_test() { assert_eq!(add(0, 0), 0); } } }
$ cargo test
running 3 tests
test tests::ignored_test ... ignored
test tests::test_add ... ok
test tests::test_add_hundred ... ok
test result: ok. 2 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out
Doc-tests tmp-ignore
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
$ cargo test -- --ignored
running 1 test
test tests::ignored_test ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Doc-tests tmp-ignore
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Documentation testing
The primary way of documenting a Rust project is through annotating the source code. Documentation comments are written in markdown and support code blocks in them. Rust takes care about correctness, so these code blocks are compiled and used as tests.
/// First line is a short summary describing function.
///
/// The next lines present detailed documentation. Code blocks start with
/// triple backquotes and have implicit `fn main()` inside
/// and `extern crate <cratename>`. Assume we're testing `doccomments` crate:
///
/// ```
/// let result = doccomments::add(2, 3);
/// assert_eq!(result, 5);
/// ```
pub fn add(a: i32, b: i32) -> i32 {
a + b
}
/// Usually doc comments may include sections "Examples", "Panics" and "Failures".
///
/// The next function divides two numbers.
///
/// # Examples
///
/// ```
/// let result = doccomments::div(10, 2);
/// assert_eq!(result, 5);
/// ```
///
/// # Panics
///
/// The function panics if the second argument is zero.
///
/// ```rust,should_panic
/// // panics on division by zero
/// doccomments::div(10, 0);
/// ```
pub fn div(a: i32, b: i32) -> i32 {
if b == 0 {
panic!("Divide-by-zero error");
}
a / b
}
Tests can be run with cargo test
:
$ cargo test
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Doc-tests doccomments
running 3 tests
test src/lib.rs - add (line 7) ... ok
test src/lib.rs - div (line 21) ... ok
test src/lib.rs - div (line 31) ... ok
test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Motivation behind documentation tests
The main purpose of documentation tests is to serve as examples that exercise
the functionality, which is one of the most important
guidelines. It allows using examples from docs as
complete code snippets. But using ?
makes compilation fail since main
returns unit
. The ability to hide some source lines from documentation comes
to the rescue: one may write fn try_main() -> Result<(), ErrorType>
, hide it and
unwrap
it in hidden main
. Sounds complicated? Here's an example:
/// Using hidden `try_main` in doc tests.
///
/// ```
/// # // hidden lines start with `#` symbol, but they're still compileable!
/// # fn try_main() -> Result<(), String> { // line that wraps the body shown in doc
/// let res = try::try_div(10, 2)?;
/// # Ok(()) // returning from try_main
/// # }
/// # fn main() { // starting main that'll unwrap()
/// # try_main().unwrap(); // calling try_main and unwrapping
/// # // so that test will panic in case of error
/// # }
/// ```
pub fn try_div(a: i32, b: i32) -> Result<i32, String> {
if b == 0 {
Err(String::from("Divide-by-zero"))
} else {
Ok(a / b)
}
}
See Also
- RFC505 on documentation style
- API Guidelines on documentation guidelines
Integration testing
Unit tests are testing one module in isolation at a time: they're small and can test private code. Integration tests are external to your crate and use only its public interface in the same way any other code would. Their purpose is to test that many parts of your library work correctly together.
Cargo looks for integration tests in tests
directory next to src
.
File src/lib.rs
:
// Define this in a crate called `adder`.
pub fn add(a: i32, b: i32) -> i32 {
a + b
}
File with test: tests/integration_test.rs
:
#[test]
fn test_add() {
assert_eq!(adder::add(3, 2), 5);
}
Running tests with cargo test
command:
$ cargo test
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Running target/debug/deps/integration_test-bcd60824f5fbfe19
running 1 test
test test_add ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Doc-tests adder
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Each Rust source file in tests
directory is compiled as a separate crate. One
way of sharing some code between integration tests is making module with public
functions, importing and using it within tests.
File tests/common.rs
:
pub fn setup() {
// some setup code, like creating required files/directories, starting
// servers, etc.
}
File with test: tests/integration_test.rs
// importing common module.
mod common;
#[test]
fn test_add() {
// using common code.
common::setup();
assert_eq!(adder::add(3, 2), 5);
}
Modules with common code follow the ordinary modules rules, so it's ok to
create common module as tests/common/mod.rs
.
Development dependencies
Sometimes there is a need to have dependencies for tests (or examples,
or benchmarks) only. Such dependencies are added to Cargo.toml
in the
[dev-dependencies]
section. These dependencies are not propagated to other
packages which depend on this package.
One such example is using a crate that extends standard assert!
macros.
File Cargo.toml
:
# standard crate data is left out
[dev-dependencies]
pretty_assertions = "0.4.0"
File src/lib.rs
:
// externing crate for test-only use
#[cfg(test)]
#[macro_use]
extern crate pretty_assertions;
pub fn add(a: i32, b: i32) -> i32 {
a + b
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_add() {
assert_eq!(add(2, 3), 5);
}
}
See Also
Cargo docs on specifying dependencies.
Güvensiz İşlemler
Bu bölüme girerken, resmi İngilizce dokümanlardan bir alıntı olarak, "Bir kod tabanındaki güvenli olmayan kod miktarı en aza indirilmeye çalışılmalıdır." Aklımıza bunu kazıyarak, hadi başlayalım! Rust'taki güvenli olmayan ek açıklamalar, derleyici tarafından uygulanan korumaları atlatmak için kullanılır; özellikle güvenli olmayan dört temel şey:
- açık(veya ham diye ifade edilir) pointer'ı derefere etme(refere ettiği yerden ayırma)
unsafe
(güvensiz) olan fonksiyon veya metotları çağırma (FFI üzerinden bir fonksiyonu çağırmak da buna dahil, kitabın bir önceki bölümüne bakın.)- static mutable(değişebilir) değişkenlere erişmek veya bunları değiştirmek
- unsafe(güvensiz) trait'ler implemente etmek
Açık pointer'lar
Açık pointer'lar *
ve referanslar &T
benzer şekilde çalışırlar, ama referanslar her zaman güvenlidir çünkü ödünç alma(borrow) denetleyicisi ile geçerli verilere işaret etmeleri garanti edilir. Açık bir göstericinin referansının kaldırılması sadece güvenli olmayan bir blok aracılığıyla yapılabilir.
fn main() { let raw_p: *const u32 = &10; unsafe { assert!(*raw_p == 10); } }
Unsafe(Güvensiz) Fonksiyonların Çağrımı
Bazı fonksiyonlar unsafe
(güvensiz) olarak bildirilebilir, bu derleyicinin yerine doğruluğu sağlamak programcının sorumluluğundadır. Buna bir örnek: std::slice::from_raw_parts
ilk elemana bir pointer ve bir uzunluk verilen bir hafıza dilimi ayıracaktır.
use std::slice; fn main() { let some_vector = vec![1, 2, 3, 4]; let pointer = some_vector.as_ptr(); let length = some_vector.len(); unsafe { let my_slice: &[u32] = slice::from_raw_parts(pointer, length); assert_eq!(some_vector.as_slice(), my_slice); } }
slice::from_raw_parts
için, onaylanması gereken varsayımlardan biri, pointer'ın geçerli belleğe geçirilmesi ve işaret edilen belleğin doğru tipte olmasıdır. Bu değişmezler korunmazsa, programın davranışı tanımsızdır ve ne olacağını bilemeyiz.
Uyumluluk
Rust dili hızla gelişmekte, ve bu nedenle mümkün olan her yerde ileriye dönük uyumluluğu sağlama çabalarına rağmen belirli uyumluluk sorunları ortaya çıkabiliyor.
Ham Tanımlayıcılar
Rust, birçok programlama dilinde olduğu gibi "keywords" yani "anahtar kelimeler" konseptini içerir. Bu tanımlayıcılar dil için bir şeyler ifade eder, bu nedenle onları değişken adı, fonksiyon adı ve bunlar gibi yerlerde kullanamazsınız. Ham tanımlayıcılar normalde izin verilmediği yerlerde bu anahtar kelimeleri kullanabilmenize izin verir. Bu, özellikle; Rust yeni anahtar kelimeler sunduğunda ve Rust'ın eski bir sürümünü kullanan bir kütüphane, daha yeni bir sürümde tanıtılan bir anahtar kelimelerle aynı ada sahip bir değişken veya fonksiyona sahip olduğunda çok yararlıdır.
Örneğin, try
isimli bir fonksiyonu dışa aktaran foo
isimli bir crate'in 2015 versiyon Rust ile derlendiğini düşünün. Bu anahtar kelime 2018 sürümündeki yeni bir özellik için ayrılmıştır, bu nedenle ham tanımlayıcılar olmasaydı bu fonksiyonu adlandırmanın bir yolu olmazdı.
extern crate foo;
fn main() {
foo::try();
}
Şu hatayı alırdınız:
error: expected identifier, found keyword `try`
--> src/main.rs:4:4
|
4 | foo::try();
| ^^^ expected identifier, found keyword
Ama aynı kodu ham tanımlayıcıyla yazabilirsiniz:
extern crate foo;
fn main() {
foo::r#try();
}
Üst
Bazı konular nasıl programladığınızla tam olarak alakalı değildir, ancak size işleri herkes için daha iyi hale getiren araç veya altyapı destekleri sağlar. Bu konu şunları içerir:
- Dokümantasyon:
rustdoc
ı dahil ederek kullanıcılar için kütüphane dokümantasyonu oluşturun. - Playpen: Rust Playpen(Rust Playground olarak da bilinen)'i dokümantasyonunuza entegre edin.
Documentation
Use cargo doc
to build documentation in target/doc
.
Use cargo test
to run all tests (including documentation tests), and cargo test --doc
to only run documentation tests.
These commands will appropriately invoke rustdoc
(and rustc
) as required.
Doc comments
Doc comments are very useful for big projects that require documentation. When
running rustdoc
, these are the comments that get compiled into
documentation. They are denoted by a ///
, and support Markdown.
#![crate_name = "doc"]
/// A human being is represented here
pub struct Person {
/// A person must have a name, no matter how much Juliet may hate it
name: String,
}
impl Person {
/// Returns a person with the name given them
///
/// # Arguments
///
/// * `name` - A string slice that holds the name of the person
///
/// # Examples
///
/// ```
/// // You can have rust code between fences inside the comments
/// // If you pass --test to `rustdoc`, it will even test it for you!
/// use doc::Person;
/// let person = Person::new("name");
/// ```
pub fn new(name: &str) -> Person {
Person {
name: name.to_string(),
}
}
/// Gives a friendly hello!
///
/// Says "Hello, [name]" to the `Person` it is called on.
pub fn hello(& self) {
println!("Hello, {}!", self.name);
}
}
fn main() {
let john = Person::new("John");
john.hello();
}
To run the tests, first build the code as a library, then tell rustdoc
where
to find the library so it can link it into each doctest program:
$ rustc doc.rs --crate-type lib
$ rustdoc --test --extern doc="libdoc.rlib" doc.rs
Doc attributes
Below are a few examples of the most common #[doc]
attributes used with rustdoc
.
inline
Used to inline docs, instead of linking out to separate page.
#[doc(inline)]
pub use bar::Bar;
/// bar docs
mod bar {
/// the docs for Bar
pub struct Bar;
}
no_inline
Used to prevent linking out to separate page or anywhere.
// Example from libcore/prelude
#[doc(no_inline)]
pub use crate::mem::drop;
hidden
Using this tells rustdoc
not to include this in documentation:
// Example from the futures-rs library
#[doc(hidden)]
pub use self::async_await::*;
For documentation, rustdoc
is widely used by the community. It's what is used to generate the std library docs.
See also:
- The Rust Book: Making Useful Documentation Comments
- The rustdoc Book
- The Reference: Doc comments
- RFC 1574: API Documentation Conventions
- RFC 1946: Relative links to other items from doc comments (intra-rustdoc links)
- Is there any documentation style guide for comments? (reddit)
Playpen
The Rust Playpen is a way to experiment with Rust code through a web interface. This project is now commonly referred to as Rust Playground.
Using it with mdbook
In mdbook
, you can make code examples playable and editable.
fn main() { println!("Hello World!"); }
This allows the reader to both run your code sample, but also modify and tweak it. The key here is the adding the word editable
to your codefence block separated by a comma.
```rust,editable
//...place your code here
```
Additionally, you can add ignore
if you want mdbook
to skip your code when it builds and tests.
```rust,editable,ignore
//...place your code here
```
Using it with docs
You may have noticed in some of the official Rust docs a button that says "Run", which opens the code sample up in a new tab in Rust Playground. This feature is enabled if you use the #[doc] attribute called html_playground_url
.